
Solution Set

CIS 1210—Data Structures and Algorithms—Fall 2024

Topological Sort & Strongly Connected Components—Tuesday, October 22/Wednesday, October 23

Readings

• Lecture Notes Chapter 18: DAGs and Topological Sort

• Lecture Notes Chapter 19: Strongly Connected Components

Review: Topological Sort

A topological sort of a directed acyclic graph (DAG) G = (V,E) is an ordering of the vertices such that for
each directed edge (u, v) ∈ E, u appears before v in the ordering. As described in the below algorithms,
topologically sorting a DAG only takes O(m+ n) time, so given a DAG, it is helpful to topologically
sort it, since most graph algorithms take Ω(m + n) time anyway. In other words, topologically sorting a
DAG is usually a free step, and if not necessary for your algorithm, it can make reasoning/thinking about
the problem easier since it gives you a visual. Below are two algorithms to find a topological sort:

Kahn’s Algorithm

Every DAG has a source node, or a node with no incoming edges. Kahn’s algorithm relies on this intuition —
at a high-level, the algorithm operates by repeatedly finding a source node, putting it next in the topological
sort, removing the node and all of the edges incident on it from the graph, and repeating this process.

Kahn’s algorithm runs in O(m+n) time. As seen in the pseudocode, the first step to compute the in-degree
of each node takes O(m + n) time since for each node, we scan through its neighbors; the second step to
populate the queue takes O(n) time since we iterate through all of the vertices. In our while loop, note that
we enqueue each node exactly once and scan through each of its neighbors, performing constant work for
each, which takes O(m+ n) time.

Tarjan’s Algorithm

Tarjan’s algorithm leverages the finishing times of DFS as shown in the pseudocode by just running DFS
and then returning the nodes in decreasing order of finishing times. Thus, it also runs in O(m+ n) time.

Review: Kosaraju’s Algorithm

Given a directed graph G = (V,E), a strongly connected component (SCC) is a maximal set S ⊆ V
such that for all u, v ∈ S, there exists a path u⇝ v and a path v ⇝ u. Thus, we can decompose a directed
graph G into its SCCs, yielding GSCC or our kernel graph. Formally, GSCC = (V SCC , ESCC). Each vertex
vi in GSCC represents a single SCC Ci in G, and an edge (vi, vj) exists in GSCC if G contains the directed
edge (x, y) where x is in SCC Ci and y is in SCC Cj . Observe that GSCC is a DAG, meaning that we can
topologically sort it to make the problem easier to think about.

Kosaraju’s algorithm is an algorithm that we can use to compute the SCCs of a graph, and by extension, to
obtain GSCC . It operates by running two DFS traversals, one on G and another on GT , the transposed graph
obtained by reversing the direction of edges in G; in the latter, we consider vertices in order of decreasing
finishing times.

Thus, Kosaraju’s runs in O(m+ n) time. As seen in the pseudocode, the first step is just DFS, which takes
O(m + n) time; the second step is computing GT , but this can be done in O(m + n) time since we just
reverse the direction of edges; and the third step is also just DFS, which takes O(m+ n) time.

1

https://www.cis.upenn.edu/~cis1210/current/lectures/notes.pdf#page=110
https://www.cis.upenn.edu/~cis1210/current/lectures/notes.pdf#page=114
https://www.cis.upenn.edu/~cis1210/current/lectures/notes.pdf#page=112
https://www.cis.upenn.edu/~cis1210/current/lectures/notes.pdf#page=113
https://www.cis.upenn.edu/~cis1210/current/lectures/notes.pdf#page=116

Solution Set

Problems

Problem 1: True or False

1. Every DAG has exactly one topological sort.

2. If a graph has a topological sort, then a DFS traversal of the graph will not find any back edges.

3. Given a DAG G Tarjan’s and Kahn’s algorithm will always output the same topological ordering.

Solution

1. False. As a counterexample, consider a graph with no edges. Any order of its vertices is a valid
topological sort.

2. True. If there is a topological sort, then the graph is a DAG, which by definition does not have any
directed cycles. Since the presence of a back edge during a DFS traversal on a directed graph indicates
a directed cycle, a DFS traversal on a graph with a topological sort will not find any back edges.

3. False. As a counterexample, consider the following directed graph:

a b

c

Depending on how Khan’s Algorithm selects vertices with in-degree 0, it could output (a, b, c). How-
ever, depending on the order of vertices processed in DFS, Tarjan’s algorithm could output (a, c, b).
While these are both valid topological orderings, they are not the same.

Problem 2

How does the number of SCC’s of a graph change if a new edge is added?

Solution

Consider a new directed edge (u, v). We have two cases. First, if u and v are already in the same SCC, the
number of SCCs does not change. Otherwise, let u and v be in SCCu and SCCv, respectively. Consider
GSCC . If SCCu ⇝ SCCv or there is no directed path between the two SCCs, then adding (u, v) will
not change the number of SCCs. However, consider the case where SCCv ⇝ SCCu. Via (u, v), we have
SCCu ⇝ SCCv, so all SCCs reachable with a path starting at SCCv and ending at SCCu (including SCCu

and SCCv) will be contracted into a single SCC. Therefore, adding a single edge may not change the number
of SCCs at all, but it could also contract the entire graph into a single SCC.

Problem 3

A graph G = (V,E) is “almost strongly connected” if adding a single edge makes the graph strongly
connected. Design an O(|V |+ |E|) algorithm to determine whether a graph is almost strongly connected.

2

Solution Set

Solution

Algorithm: Use Kosaraju’s algorithm to create GSCC ; then, topologically sort it. Add an edge from the
last SCC to the first SCC in the topological sort and check if the new graph G′ is now strongly connected
either by running Kosaraju’s again on G′ and checking if there is only one SCC or by picking an arbitary
vertex v; running BFS/DFS starting at v on both G′ and G′T ; and seeing if v can reach all other vertices
in both cases. If there is only one SCC, return true; otherwise, return false.

Proof of Correctness: We want to show that our algorithm returns true iff G is almost strongly connected.
First, however, we show that our last step properly checks if G′ is strongly connected. If Kosaraju’s yields
one SCC, then, by definition, G′ is strongly connected. In the alternate method, we know v has a path to
all other vertices in G′, and we also know that all other vertices have a path to v because we ran BFS/DFS
on G′T as well. So, for any two vertices, x, y ∈ G, there exists a path from x to y by following x⇝ v ⇝ y,
implying G′ is strongly connected. We now turn to proving the biconditional statement:

(⇒) If our algorithm returns true, then our new graph G′ is strongly connected. Since we only added a
single edge in our algorithm, by definition, it follows that our original graph G is almost strongly connected.

(⇐) We’ll prove the contrapositive: If our algorithm returns false, then our new graph G′ is not strongly
connected. We want to show that only the addition of an edge from the last SCC to the first SCC is necessary
for checking whether G is almost strongly connected. For G to be almost strongly connected, every vertex
in G must have a path to vertex s, the source of the edge to add, and a path to itself from t, the second
vertex/endpoint of the new edge. If it didn’t, then the new graph G′ would have a vertex with no path to
s and/or no path from t. Hence, t must be in the first SCC, as if it wasn’t, then any vertex earlier in the
topological sort is not reachable from t; similarly, s must be in the last SCC, as if it wasn’t, then any vertex
later in the topological sort would not be able to reach s. Therefore, adding a single edge from the last SCC
to the first SCC to obtain G′ and finding that G′ is not strongly connected is sufficient to conclude that G
is not almost strongly connected.

Runtime Analysis: Using Kosaraju’s and generating GSCC takes O(|V |+ |E|) time. Topologically sorting
GSCC also takes O(|V |+|E|), since we can use Kahn’s or Tarjan’s. Checking if the resulting graph is strongly
connected requires running Kosaraju’s or BFS/DFS, both of which take O(|V | + |E|) time. Therefore, our
algorithm runs in O(|V |+ |E|) time.

3

	Readings
	Review: Topological Sort
	Kahn's Algorithm
	Tarjan's Algorithm

	Review: Kosaraju's Algorithm
	Problems
	Problem 1: True or False
	Solution

	Problem 2
	Solution

	Problem 3
	Solution

