
Solution Set

CIS 1210—Data Structures and Algorithms—Fall 2024

Huffman Coding—Tuesday, October 8 / Wednesday, October 9

Readings

• Lecture Notes Chapter 15: Huffman Coding

Review: Huffman Coding

The motivation behind Huffman Coding is to encode and decode characters as bits, minimizing the average
bits per letter (ABL). Furthermore, we seek a prefix-free code, where no encoding is a prefix of another —
implying that a bit sequence can be parsed and decoded without any ambiguity.

The Huffman algorithm is a greedy algorithm that does this. Given a set of characters and their frequencies,
the algorithm outputs an encoding by repeatedly merging the 2 nodes with the smallest frequency values
until only one node remains. This one node is the root of the Huffman tree, whose leaves are characters
and each root-to-leaf path is an encoding of that character. Furthermore, this tree is a full binary tree,
where each internal node has exactly 2 children. Therefore, the Huffman algorithm produces an optimal and
prefix-free encoding that minimizes the ABL.

The running time of the Huffman algorithm is O(n log n) if we utilize a min-heap to find the 2 nodes with
minimum frequency in each step, as seen in the pseudocode. This is because at each step, we perform a
constant number of Extract-Min and Insert operations, which take O(log n) time, and we repeat this
for O(n) iterations.

Problems

Problem 1

Construct an optimal Huffman coding for the following alphabet and frequency table S:

Character: A B C D E
Frequency: 0.4 0.3 0.15 0.1 0.05

What is the ABL, or average bits per letter, for this encoding?

Solution

The following tree T would be produced:

/\

A /\

B /\

C /\

E D

ABL(T ) =
∑
x∈S

fx · depthT (x) = 0.4 · 1 + 0.3 · 2 + 0.15 · 3 + 0.1 · 4 + 0.05 · 4 = 2.05

1

https://www.cis.upenn.edu/~cis1210/current/lectures/notes.pdf#page=86
https://www.cis.upenn.edu/~cis1210/current/lectures/notes.pdf#page=95


Solution Set

Problem 2

You have an alphabet with n > 2 letters and frequencies. You perform Huffman encoding on this alphabet,
and notice that the character with the largest frequency is encoded by just a 0. In this alphabet, symbol i
occurs with probability pi; p1 ≥ p2 ≥ p3 ≥ ... ≥ pn.

Given this alphabet and encoding, does there exist an assignment of probabilities to p1 through pn such that
p1 < 1

3? Justify your answer.

Solution

There does not exist an assignment of probabilities to p1 through pn such that p1 < 1
3 . Assume for the sake

of contradiction that there exists an assignment such that p1 < 1
3 . Consider the last step of the Huffman

algorithm when our two final nodes are merged into one node. Let these two final nodes be x and y. Because
character 1, which has the highest frequency, has an encoding length of 1, it must have been merged via this
step. WLOG, let x be this character 1. Since this is the final step of Huffman, we know px + py = 1. From
our assumption that p1 < 1

3 , we know py > 2
3 .

Because n > 2, y must be a node representing at least 2 characters. Consider the time when y was
created. Let the nodes that were merged to become y be a and b. We know pa + pb > 2

3 , which implies
that max{pa, pb} > 1

3 . Here, we have reached a contradiction. Huffman always merges the two smallest
frequency nodes, but when y was created, node x with px < 1

3 was still available and unmerged. Hence, x
would have been chosen instead of max{a, b}. Therefore, via contradiction, we have proved that the original
claim is false and thus that there does not exist an assignment of probabilities as specified.

2


	Readings
	Review: Huffman Coding
	Problems
	Problem 1
	Solution

	Problem 2
	Solution



