
Solution Set

CIS 1210—Data Structures and Algorithms—Fall 2024

Asymptotic Notation—Tuesday, September 3 / Wednesday, September 4

Readings

• Lecture Notes Chapter 5: Running Time and Growth Functions

Review: Runtime Analysis

When analyzing algorithms, we can analyze the best case, average case, and worst case running times:

Best Case Analysis: This is when we analyze the runtime of the algorithm on the set of inputs in
which it performs the fastest. This isn’t always useful because algorithms can be modified to make
the best case performance trivial. For example, we may hardcode the solution/what to return for a
specific input. In these situations, the best case performance is effectively meaningless. Note: Best case
analysis is different from the best conceivable runtime, which is the fastest that any algorithm could
conceivably solve a given problem.

Worst Case Analysis: This is when we analyze the runtime of the algorithm on the set of inputs
with which it performs the slowest. This is useful because the worst case running time of an algorithm
gives an upper bound on the running time for any input. In other words, the worst case running time
provides a guarantee that the algorithm can never take any longer than this. Thus, unless otherwise
specified, in CIS 1210, we will ask you to perform worst case analysis since it is the cleanest
and usually most useful method of analysis.

Average Case Analysis: This is when we analyze the runtime of the algorithm on the “average”
input. This is less common than worst case analysis, as what constitutes an “average” input is usually
not given to us and finding the “average” input requires taking an expectation over the probability
distribution of all possible inputs to the algorithm.

As the input size grows, we use asymptotic notations to describe the asymptotic behavior and efficiency
of a function. The definitions in asymptotic notations are as follows:

Big-O: If f(n) ∈ O(g(n)), there exist positive constants c and n0 such that for all n ≥ n0,

0 ≤ f(n) ≤ c · g(n)

g(n) is an asymptotic upper bound for f(n).

Big-Ω: If f(n) ∈ Ω(g(n)), there exist positive constants c and n0 such that for all n ≥ n0,

f(n) ≥ c · g(n) ≥ 0

g(n) is an asymptotic lower bound for f(n).

Big-Θ: If f(n) ∈ Θ(g(n)), there exist positive constants c1, c2 and n0 such that for all n ≥ n0,

0 ≤ c1 · g(n) ≤ f(n) ≤ c2 · g(n)

In other words, f(n) ∈ Θ(g(n)) if and only if f(n) ∈ O(g(n)) and f(n) ∈ Ω(g(n)).
g(n) is an asymptotic tight bound for f(n).

1

https://www.seas.upenn.edu/~cis1210/current/lectures/notes.pdf#page=39


Solution Set

Asymptotic notations can also be defined in terms of limits:

Big-O: f(n) ∈ O(g(n)) if lim
n→∞

f(n)/g(n) = 0 or a constant.

Big-Ω: f(n) ∈ Ω(g(n)) if lim
n→∞

f(n)/g(n) = ∞ or a constant.

Big-Θ: f(n) ∈ Θ(g(n)) if lim
n→∞

f(n)/g(n) = a nonzero constant.

Problems

Problem 1: True or False

1. A Big-O, Big-Θ, and Big-Ω bound for an algorithm correspond to its worst-case, average-case, and
best-case runtime, respectively.

2. For any two functions, f(n) and g(n), either f(n) ∈ O(g(n)) or g(n) ∈ O(f(n)).

3. f(n) ∈ O(g(n)) if and only if g(n) ∈ Ω(f(n)).

Solution

1. False.

Main Idea: Worst-case, average-case, and best-case are tied to the input instances, while Big-O,
Big-Θ, and Big-Ω are bounds to the function’s growth rate, which applies across all possible input
instances.

Big-O (“upper bound”), Big-Θ (“tight bound”), and Big-Ω (“lower bound”) notation are definitions
in asymptotic notation — they are all ways to describe the asymptotic behavior and efficiency of a
function as its input size (usually denoted by n) scales. In other words, under the RAM model, Big-O,
Big-Θ, and Big-Ω are all approaches used to bound the running time of an algorithm as n grows. In
contrast, an algorithm’s worst-case, average-case, and best-case runtime are tied to a set of inputs.
For example, consider Insertion Sort. The best-case runtime can occur when the input is completely
sorted, and the worst-case runtime can occur when the input is completely sorted in reverse order.
Finding the average-case runtime for Insertion Sort requires a probability distribution on the set of
inputs to determine the “average” input.

Thus, none of the definitions in asymptotic notation directly correspond to the worst-case, best-case,
and average-case runtimes of an algorithm. In fact, note that one can provide a Big-O, Big-Θ, and
Big-Ω bound on the best-case, worst-case, and average-case runtime of an algorithm — try to find the
bounds for the best-case and worst-case runtimes for Insertion Sort!

2. False.

Main Idea: Oscillating functions can possibly neither upper bound nor lower bound each other.

As a counterexample, consider f(n) = sin(n) and g(n) = cos(n). To prove that f(n) ∈ O(g(n)) or
g(n) ∈ O(f(n)), by the definition of Big-O, we would need to find some positive constant n0 such that
for all n ≥ n0, either f(n) is an upper-bound for g(n) or g(n) is an upper-bound for f(n). However,
since both f(n) and g(n) are oscillating functions, observe that this is not possible: one of these
functions cannot upper-bound the other function as n approaches positive infinity.

3. True.

Main Idea: If a g(n) upper bounds f(n), (above f(n)), then f(n) must lower bound g(n) (below
g(n)).

2



Solution Set

(⇒) First, we prove that if f(n) ∈ O(g(n)), then g(n) ∈ Ω(f(n)). If f(n) ∈ O(g(n)), then by the
definition of Big-O, we know there exist positive constants c and n0 such that for all n ≥ n0,

f(n) ≤ c · g(n).

We choose c′ = c−1 and n′
0 = n0. Both are positive, and observe that for all n ≥ n′

0, we have

g(n) ≥ c′ · f(n),

so we know that g(n) ∈ Ω(f(n)) by the definition of Big-Ω.

(⇐) Next, we prove that if g(n) ∈ Ω(f(n)), then f(n) ∈ O(g(n)). If g(n) ∈ Ω(f(n)), then by the
definition of Big-Ω, we know there exist positive constants c and n0 such that for all n ≥ n0,

g(n) ≥ c · f(n).

We choose c′ = c−1 and n′
0 = n0. Both are positive, and observe that for all n ≥ n′

0, we have

f(n) ≤ c′ · g(n),

so we know that f(n) ∈ O(g(n)) by the definition of Big-O.

3



Solution Set

Problem 2

Prove that 3n2 + 100n = Θ(5n2).

Solution

First, we prove Big-O. By the definition of Big-O, we want to show that there exist positive constants c and
n0 such that for all n ≥ n0,

3n2 + 100n ≤ c · 5n2

Setting c = 1, we want to find some positive constant n0 such that for all n ≥ n0, we have

3n2 + 100n ≤ 1 · 5n2

3n+ 100 ≤ 5n

100 ≤ 2n

50 ≤ n

So when c = 1 and n0 = 50, the expression holds for all n ≥ n0, proving that 3n2 + 100n = O(5n2).

Next, we prove Big-Ω. By the definition of Big-Ω, we want to show that there exist positive constants c and
n0 such that for all n ≥ n0,

3n2 + 100n ≥ c · 5n2

Setting c = 3/5, we want to find some positive constant n0 such that for all n ≥ n0, we have

3n2 + 100n ≥ (3/5) · 5n2

3n2 + 100n ≥ 3n2

100n ≥ 0

n ≥ 0

So when c = 3/5 and n0 = 1, the expression holds for all n ≥ n0, proving that 3n2 + 100n = Ω(5n2).

Since 3n2 + 100n = O(5n2) and 3n2 + 100n = Ω(5n2), we have proved that 3n2 + 100n = Θ(5n2).

Tip: When proving an asymptotic bound, there are usually many pairs of c and n0 that fulfill the
definitions, so remember that you can always choose values that make your math less messy. To actually
find the values of c and n0, it can be helpful to guess and try out different values; for example, as shown
above, one approach is to set c to some value such as 1 and then see what values of n0 could work.

Alternate Solution

Since the limit exists as shown below, we can apply the limit definition of Big-Θ to prove the claim as follows:

lim
n→∞

3n2 + 100n

5n2
= lim

n→∞

3n+ 100

5n

= lim
n→∞

3n

5n

= 3/5

Since the limit as n approaches positive infinity is a nonzero constant, by the limit definition of Big-Θ, we
know that 3n2 + 100n = Θ(5n2).

4



Solution Set

Problem 3

Prove using induction that n lg n = Ω(n).

Solution

We will prove that n lg n ≥ cn for all n ≥ n0 by induction on n and choosing c = 1 and n0 = 4.

Base Case: From our choice of n0, the base case is when n = 4. Since 4 lg 4 ≥ 1 · 4, the base case holds.

Induction Hypothesis: Assume that we have k lg k ≥ k for some integer k ≥ 4.

Induction Step: We want to show that (k + 1) lg(k + 1) ≥ k + 1.

(k + 1) lg(k + 1) ≥ (k + 1) lg k (since lg k is monotonically increasing)

= k lg k + lg k

> k lg k + 1 (since k ≥ 4, lg k ≥ 2, so lg k > 1)

≥ k + 1 (by IH)

We have shown that (k + 1) lg(k + 1) ≥ k + 1, concluding our induction step and thus the proof. Therefore,
we have proved that n lg n = Ω(n).

Tip: When using induction to prove an asymptotic bound, it can be helpful to first probe into your
Induction Step and reverse engineer values for c and n0 that will work the best algebraically for your
proof. For example, here, note how our choice of n0 affects both our base case and IS.

Problem 4

Prove that lg(n!) = Θ(n lg n).

Solution

To prove Big-Θ, we will prove Big-O and Big-Ω separately.

First, we prove Big-O. By the definition of Big-O, we want to show that there exist positive constants c and
n0 such that for all n ≥ n0,

lg(n!) ≤ c · n lg n

Manipulating the LHS, we see

lg(n!) = lg(1 · 2 · · ·n)
= lg 1 + lg 2 + · · ·+ lg n (by log properties)

=

n∑
i=1

lg i

≤ n lg n (since i ≤ n)

Since the expression holds for all n ≥ n0 when c = 1 and n0 = 1, we have proved that lg(n!) = O(n lg n).

Next, we prove Big-Ω. By the definition of Big-Ω, we want to show that there exist positive constants c and
n0 such that for all n ≥ n0,

lg(n!) ≥ c · n lg n

5



Solution Set

We first find a lower-bound for lg(n!), which we do by taking a “subset” of the terms as shown below:

lg(n!) = lg(1 · 2 · · ·n)

= lg 1 + lg 2 + · · ·+ lg
n

2
+ lg(

n

2
+ 1) + · · ·+ lg n (by log properties)

≥ lg
n

2
+ lg(

n

2
+ 1) + · · ·+ lg n (subset with the second half of the terms)

≥ n

2
· lg n

2
(since lg n is monotonically increasing)

Setting c = 1/4 and n0 = 4, observe that n
2 · lg n

2 ≥ 1
4 · n lg n for all n ≥ n0 as shown below:

n

2
· lg n

2
≥ n

4
lg n

⇐⇒ n

2
· (lg n− lg 2) ≥ n

4
lg n (by log properties)

⇐⇒ n

2
· (lg n− 1) ≥ n

4
lg n

⇐⇒ n

2
lg n− n

2
≥ n

4
lg n

⇐⇒ n

4
lg n ≥ n

2
⇐⇒ n lg n ≥ 2n

⇐⇒ lg n ≥ 2

In summary, from the math above, we have shown that

lg(n!) ≥ n

2
· lg n

2

≥ n

4
· lg n

Since the expression holds for all n ≥ n0 when c = 1
4 and n0 = 4, we have proved that lg(n!) = Ω(n lg n).

Since lg(n!) = O(n lg n) and lg(n!) = Ω(n lg n), we have proved that lg(n!) = Θ(n lg n).

Tip: We can take a subset of terms when proving Big-Ω because we are inherently proving a “lower
bound” — this makes the algebraic manipulation a lot less messy in this question! You will see this
strategy in action more in the next week!

6


	Readings
	Review: Runtime Analysis
	Problems
	Problem 1: True or False
	Solution

	Problem 2
	Solution
	Alternate Solution

	Problem 3
	Solution

	Problem 4
	Solution



