
CIS 1100
Unit Testing Python

Fall 2024

University of Pennsylvania

Note
Admin:
 - exam reminders
 - practice exam posted
 - exam review tonight
 - actual exam time:
 - in-class, you get 1 hour
 - you can't bring in any notes
 - clobber policy

// More like a typical lecture since no check-in
// also no-check-in for next lecture since they have the exam
Review: basic of writing a test
 - reiterate: why is testing important
 - why uinittest over print statements?
 - some starter file "my_problems.py" that has some functions I want to test
 - def most common letter(word)
 - lets write one test together
 - anyone volunteer a word?
 - okay, without looking at the function implementatino, what is the expected output?
 - write the test
 - error messages in the assert

 - can you write another test case that tests something else? (L11)

 - importance of having a wide variety of tests to cover all cases
 - edgecases
 - middle_value() # gets middle value from a list
 - what are some good test cases we can write for this? (C12)

 - more dictionary practice
 - okay, lets write some tests for this!
 - come up 3 cases, write one test (C14)
 - okay, now lets write the code for word_counts (C16)
 - def word_counts(line):
 - dict[key] = value and split may be useful

lists and sets

//////////////////////////////
// next lecture
//////////////////////////////
more dicts practice
reading error messages
debugging
show how to test float values with my_add()

To test a function (e.g. encrypt), we always need:

Recipe for a Unit Test

The Input(s): "ET TU, BRUTE?" and "G"

The Expected Output: KZ ZA, HXAZK?

The Actual Output: gotten from running the encrypt function

Compariing the Expected and Actual Output: Having

you look at the output and making sure it looks correct.

1

It is important to have a wide variety of tests to cover all cases.

Edge Cases

If we pass a test, we only know it works for those cases (those particular inputs)

Cases that are not tested may not work

We often want to test a variety of inputs and any "edge cases" (cases

that are not common or obvious, but still should be handled correctly)

2

Consider the following function header:

Given a string, returns a dictionary that contains all the words (split on whitespace)
mapped onto how many times that word shows up in the string.
def get_word_counts(string):

Come up 3 different test cases, choose one of them and write the python test code for it

Practice (C12)

3

Now that we have written some tests, lets write the function itself.

Sometimes it actually helps to write the tests first, it can help with thinking about all the cases

the code will have to handle.

Given a string, returns a dictionary that contains all the words (split on whitespace)
mapped onto how many times that word shows up in the string.
def get_word_counts(string):

Hint: dict[key] = value and split() may be useful

Practice (C14)

4

If we were able to get similar affects by just printing? Why use unittest?

Why use unittest instead of just printing?

Helps keep the code organized: Which stuff is for

testing and which stuff is part of the actual program

Unlike what we did in Caesar, the test can check the output for us

5

def my_add(a, b):
 """Return the sum of a and b."""
 return a + b

How many of these tests pass? (Assume that we imported my_add properly...) (S7)

def test_three_plus_four(self):
 a = 3
 b = 4
 self.assertEqual(7, my_add(a, b))

def test_neg_three_plus_four(self):
 a = -3
 b = 4
 self.assertEqual(-1, my_add(a, b))

def test_pt_two_plus_pt_one(self):
 a = 0.2
 b = 0.1
 self.assertEqual(0.3, my_add(a, b))

def test_neg_zero_plus_zero(self):
 a = 0.0
 b = 0
 self.assertEqual(0, my_add(a, b))

Activity: Passing & Failing

6

1. Failing test cases can happen because of an error in

the test case rather than a fault in the underlying code

2. float values can have small amounts of rounding error. When writing unit tests for non-

integer numeric values, use assertAlmostEqual(expected, actual, places=7)
i. The setting for the places kwarg chooses which decimal place

to round the difference between expected and actual to.

ii. places=10 is more "strict" than places=4 is more "strict" than places=0

def test_pt_two_plus_pt_one_correct(self):
 a = 0.2
 b = 0.1
 self.assertAlmostEqual(0.3, my_add(a, b))

Two Takeaways

7

Homework 4 is Food Recommender:

Towards HW04...

Write a function that reads a .CSV file and transforms it into a

dict mapping restaurant names to tuples of restaurant data

Write a bunch of functions that find restaurants

that match certain conditions in the dictionary

Write a bunch of functions that aggregate information about all of

the restaurants or all of the restaurants that meet a certain condition

TEST these functions

8

From last Wednesday:

Next:

Picking Up on books.txt

read a structured .txt file that contained information about a bunch

of books into a dict mapping book names to tuples of book data

Find all books by a given author

Find the highest rated book released in a year

TEST these

9

Returns a dictionary mapping book titles to tuples of book information.

def process_book_file(filename):
 book_file = open(filename, 'r')
 num_books = int(book_file.readline().strip())
 d = dict()
 for _ in range(num_books):
 title = book_file.readline().strip()
 author = book_file.readline().strip()
 year, pages, rating = book_file.readline().strip().split()
 d[title] = (author, year, pages, rating)

 book_file.close()
 return d

Last Time: Process Books

10

Outside of just printing the output and looking at it, how could we test it?

Activity: How to Test

11

Outside of just printing the output and looking at it, how could we test it?

Activity: How to Test

Could check that the output dictionary is exactly what we expect

Check that the output dictionary has the right size (easier)

Check that the output dictionary contains some arbitrary

elements of books.txt that you know should be there

Hard for big files like books.txt

Easier if we create a smaller input file

12

Outside of just printing the output and looking at it, how could we test it?

In (L11), describe a test case (with expected and actual output) for:

Activity: How to Test

Could check that the output dictionary is exactly what we expect

Check that the output dictionary has the right size (easier)

Check that the output dictionary contains some arbitrary

elements of books.txt that you know should be there

Hard for big files like books.txt

Easier if we create a smaller input file

a "typical" input

an "edge case" input

13

Return a set of the titles of all of the books that were written by a given author.

def books_by_author(books, author):

First, let's think about testing. Generating expected results can

be challenging, but it's how you decide if you're right or not.

In (S8), write the value for expected that would make this test

pass. Do some sleuthing! (In Codio, Find -> Find might help)

def test_books_by_author_ginzburg(self):
 d = book_recommender.process_book_file("books.txt")
 author = "Natalia Ginzburg"
 result_set = book_recommender.books_by_author(d, author)
 actual = len(result_set)
 expected = ???
 self.assertEqual(expected, actual)

Next up: Books By Author

14

In (S9), write the value for expected that would make this test

pass. Do some sleuthing! (In Codio, Find -> Find might help)

def test_books_by_author_zambreno(self):
 d = book_recommender.process_book_file("books.txt")
 author = "Kate Zambreno"
 result_set = book_recommender.books_by_author(d, author)
 self.assertEqual(1, len(result_set))

 expected = ???
 self.assertTrue(expected in result_set)

Next up: Books By Author

15

Return a set of the titles of all of the books that were written by a given author.

def books_by_author(books, author):

Not vital, but can you do it in one line with a comprehension?

Next up: Implement Books By Author

16

	Unit Testing
	Recipe for a Unit Test
	Edge Cases
	Practice (C12)
	Practice (C14)
	Why use unittest instead of just printing?
	Activity: Passing & Failing
	Two Takeaways
	Towards HW04...
	Picking Up on books.txt
	Last Time: Process Books
	Activity: How to Test
	Activity: How to Test
	Activity: How to Test
	Next up: Books By Author
	Next up: Books By Author
	Next up: Implement Books By Author

