
CIS 1100
Sets! Python

Fall 2024
University of Pennsylvania

Any questions from last time?

1

Sometimes we want our functions to be able to take default
values for their inputs. We can do this with keyword arguments.

def divide(a, b, rounding=False):
 result = a / b
 if rounding:
 return round(result)
 else:
 return result

rounding is a keyword argument that is defined by its name
as well as the default value that it takes if it is not replaced.

Keyword Arguments

2

def divide(a, b, rounding=False):
 result = a / b
 if rounding:
 return round(result)
 else:
 return result

We can do any of the following:

>>> divide(3422, 194)
17.63917525773196
>>> divide(3422, 194, rounding=True)
18
>>> divide(3422, 194, True)
18
>>> divide(3422, 194, False)
17.63917525773196

Keyword Argumennts

3

Signatures:

Calls:

Rules of Keyword Arguments

All keyword parameters have to be provided AFTER all the positional ones

A keyword parameter is defined by writing identifier=<default_value>

Can have as many as you want, including ONLY keyword parameters

All keyword arguments have to be passed in AFTER
all positional inputs, but from there can be in any order

Keyword arguments can be given positionally or by
name, but you should always just give thme by name

4

def fun(a, b, c=13, d):
 pass

Good or Bad?

5

def fun(a, b, c=13, d):
 pass

BAD!

Good or Bad?

6

def fun(a=13, n="haha"):
 pass

Good or Bad?

7

def fun(a=13, n="haha"):
 pass

GOOD!

Good or Bad?

8

def fun(a, b, c=, d=13):
 pass

Good or Bad?

9

def fun(a, b, c=, d=13):
 pass

BAD!

Good or Bad?

10

def fun(x, y, z=0):
 pass

then,

...
fun(3, 4, 0)
...

Good or Bad?

11

def fun(x, y, z=0):
 pass

then,

...
fun(3, 4, 0)
...

OK, but redundant?

Good or Bad?

12

def fun(x, y, z=0):
 pass

then,

...
fun(z=0, 3, 4)
...

Good or Bad?

13

def fun(x, y, z=0):
 pass

then,

...
fun(z=0, 3, 4)
...

BAD!

Good or Bad?

14

def fun(x, y, z=0):
 pass

then,

...
fun(3, 4, z=x+y)
...

Good or Bad?

15

def fun(x, y, z=0):
 pass

then,

...
fun(3, 4, z=x+y)
...

BAD!

Good or Bad?

16

def fun(x, y, z=0):
 pass

then,

...
fun(3, 4)
...

Good or Bad?

17

def fun(x, y, z=0):
 pass

then,

...
fun(3, 4)
...

Good!

Good or Bad?

18

Sets are an unordered container for data.

Unordered means:

Review: Sets

We can still use for to loop over every element

can still use in to see if something is in it

can not access into it with an index and [] or slice

19

Sets look similar to lists, but with {} instead of []

Cannot store lists, dicts or other sets within a set

Most important part of a set: it enforces uniquness of its
elements. An element can only be in the set once or not at all.

Review: Sets

{"this"}

{"howdy", "partner"}

20

There are a few common features of a set:

What is the final value of my_set after running this code? (S7)

my_set = {"moons", "farming", "tormented"}
my_set.add("agility")
my_set.add("agility")
my_set.remove("agility")
my_set.discard("Farming")
my_set.remove("farming")

More Set Review

.add() adds an item to the set

.remove() removes an item from a set, if the item is not in the set then crash

.discard() removes an item from a set, ignore if the item is already not in the set

set comprehension work like list comprehensions, use {} instead of []

21

Put both of these in (C12)

def remove_all(words, filter):
 # given a list of strings, return a new list of strings except all words
 # that are in the input set "filter" are not in the output
 # remove_all(["Hi", "There"], {"Hi"}) -> ["There"]

def count_unique_words(words):
 # given a list of strings, return the number of unique strings in that list

Practice

22

Name Meaning Method Operator

Union
Create a new set with
all elements from both

s.union(t) s | t

Intersection
Create a new set with only
elements that appear in both sets

s.intersection(t) s & t

Difference
Create a new set with only
elements in s that don't appear in t

s.difference(t) s - t

Symmetric
Difference

Create a new set with elements that
appear in only one set but not both

s.symmetric_difference(t) s ^ t

Set Operations

23

Put both of these in (C14)

Implement both an intersection function and a union function without using the built-in
intesection or union operators or functions.

def set_union(s1, s2):
 # given two sets, return a new set that has all elements of both input sets
 # set_union({"hi","ho"}, {"bad","hi"}) -> {"hi", "ho", "bad"}

def set_intersection(s1, s2):
 # given two sets, return a new set that only has the elements that are in both input sets
 # set_intersection({"hi","ho"}, {"bad","hi"}) -> {"hi"}

Set Operations Practice

24

Dictionaries (also called "dicts") are the much more commonly used unordered collection

Dictionaries

Associates keys to values

Allow for looking up some information associated with a search key

Keys must be unique, values do not need to be unique

25

Any association from keys (things you can search

by) to values (information you might want to know.)

The Penn Directory, for example:

Name : Email
Harry Smith : sharry@seas
Travis McGaha : tqmcgaha@seas
...

Here, the names are keys and the emails are values.

What is a Mapping?

26

Dict literals are defined with curly braces ({}) and separate keys and values with a colon.

Dict Syntax

{3, 10, 15}

{"Harry" : "sharry", "Travis" : "tqmcgaha"}

{} is an empty dict

is a set with three elements

is a dict with two elements (key-value pairs)

writing just dict() gets the same result

27

Given the following dictionaries, which ones are legal dictionaries? (Legal / Illegal)

(S8)

speak = {
 "dog": "woof",
 "cat": "meow",
 "fish": "blub",
 "seal": "ow ow ow",
 "fox": "woof"
}

(S9)

faves = {"The Wall", "Her", "Princess Mononoke"}

(S10)

friends = {"Jamie":["Tampa"], "Hunter": ["Tampa", "Orlando"], "Zack": ["Tampa"], "Jamie": ["NYC"]}

Dictionary Practice: Reading

28

Next time
More on dictionaries!

I only just barely started talking about them

These are a really important data structure in Python and Programming in general

29

