
CIS 1100
Beyond while True Python

Fall 2024

University of Pennsylvania

The full rule for while loops:

In a while loop, we can replace True with any

boolean expression so that we don't loop forever!

Beyond while True

Test the condition the first time the loop is reached

If True , execute the body of the loop

If False , skip past the body of the loop

Whenever the last statement of the body of the loop is finished, test the condition again.

1

count = 0
while count < 10:
 count = count + 2
 print(" ")
print(count)

In box (S7), write the following two numbers:

Counting Loop

How many snakes get printed?

What's the value of count that gets printed?

2

We'll talk more about the rules of loops in the next couple of lectures.

For now, a couple examples of animations that go for a while and then stop.

More Iteration to Come

3

Extending the animation formula a bit, we can think about a recipe

for animations that run until they reach some stopping condition:

1. Setup: stuff that runs once before the animation/interactivity starts.

2. Animation loop:

i. Defined with while <expr>: , where the expression is something

that starts as evaluating to True but eventually becomes false

ii. Clearing & drawing current frame

iii. Updating variables for next frame

iv. pd.advance()

3. Finale: stuff that runs once after the animation/interactivity ends.

i. Must have pd.run() at the end for this to show up.

rivalry.py : Animations that Stop

4

Requirements:

Example: Guessing Game

Screen should start blank before any keys are pressed

Let the game run as long as the player has not pressed the secret key

Each frame, check if the player has made a guess

if the guess is wrong, show the player's guess and tell them they're wrong.

if the guess is right, stop the game and display a victory screen.

5

import penndraw as pd
letter = "s"
still_guessing = True
while still_guessing:
 if pd.has_next_key_typed():
 guess = pd.next_key_typed()
 if guess == letter:
 still_guessing = False
 else:
 pd.clear()
 pd.text(0.5, 0.5, f"Not {guess}, try again!")
 pd.advance()

pd.clear(pd.GREEN)
pd.text(0.5, 0.5, f"Hurray! {letter} is right.")
pd.run()

guessing.py

6

Program should have three "states": before, during, and after press.

Example: Timer

before press:

during press:

after press:

display a red background and nothing else

ends when a key is typed for the first time

starts when a key is typed for the first time

continues as long as a key is continuously being held

displays the number of consecutive frames that a key has been typed on a green screen

starts after a key has been released, displays the duration of the press over yellow screen

7

import penndraw as pd

button_released = False
button_held = False
counter = 0
pd.clear(pd.RED)
while not button_released:
 if pd.has_next_key_typed():
 button_held = True

 if button_held:
 counter = counter + 1
 pd.clear(pd.GREEN)
 pd.text(0.5, 0.5, f"{counter}...")
 if not pd.has_next_key_typed():
 button_released = True

 pd.advance()

pd.clear(pd.HSS_YELLOW)
pd.text(0.5, 0.5, f"Button held for {counter} frames.")
pd.run()

timer.py

8

No matter what, all sequence types are ordered collections of elements.

Different sequence types have different restrictions on what they contain.

Recap: Sequences

Ordering gives rise to indexing, which allows for

selecting individual elements or subsequences

str : characters

range : int values

tuple : anything

list : anything

9

Type Index/Subsequence Membership len() Concatenation Modification

str yes
individual elements

or subsequences
yes yes no

range yes individual elements yes no no

tuple yes individual elements yes yes no

list yes individual elements yes yes

yes (update with

[] , append ,

extend)

Recap: Sequences

10

append() allows us to add a single value to the end of a list.

numbers_list = [1, 2, 3]

numbers_list.append(4)
print(numbers_list)

Prints:

[1, 2, 3, 4]

Growing Lists: append

11

I want to modify guessing.py so that all previous guesses are saved. (C12)

import penndraw as pd
letter = "s"
still_guessing = True
history = "" #
while still_guessing:
 if pd.has_next_key_typed():
 guess = pd.next_key_typed()
 if guess == letter:
 still_guessing = False
 else:
 pd.clear()
 # TODO: Save the guess!
 pd.text(0.5, 0.5, f"Not {guess}, try again!") # TODO: Change this line to display prev. guesses
 pd.advance()

pd.clear(pd.GREEN)
pd.text(0.5, 0.5, f"Hurray! {letter} is right.") # TODO: Change this line to show no. of guesses taken
pd.run()

Toolkit: len() and + for string concatenation.

Improving guessing.py

12

I want to modify guessing.py so that all previous guesses are saved. (C14)

import penndraw as pd
letter = "s"
still_guessing = True
history = [] #
while still_guessing:
 if pd.has_next_key_typed():
 guess = pd.next_key_typed()
 if guess == letter:
 still_guessing = False
 else:
 pd.clear()
 # TODO: Save the guess!
 pd.text(0.5, 0.5, f"Not {guess}, try again!") # TODO: Change this line to display prev. guesses
 pd.advance()

pd.clear(pd.GREEN)
pd.text(0.5, 0.5, f"Hurray! {letter} is right.") # TODO: Change this line to show no. of guesses taken
pd.run()

Toolkit: len() and something else for adding values to a list.

Improving guessing.py

13

Sequences in Python are indexable: we can refer to values

at specific positions in the sequence by their positions.

"indexing"
 01234567

Notice that "indexing" is a string with eight characters: since

we start counting at 0 , the index of the last character is 7 .

Recap: Indexing in Sequences

first value lives at index 0

second value lives at index 1

14

We know how to refer to one position in a sequence at a time with a single index.

print("earth"[1:4]) # prints "art"
print("earth"[0:3]) # prints "ear"

This operation is called slicing.

Recap: Slicing

How about a group of positions—a subsequence?

If we want to obtain a subsequence of a larger sequence s including all characters

starting at index i and stopping before index j , then we can do that by writing s[i:j]

15

When slicing, we always excluding the element at the end position:

Slicing: Starting and Stopping

"earth[1:4]" gives "art" , which is the subsequence

consisting of characters at positions 1 , 2 , and 3 only.

For a string s , s[i:j] will always have a length of j - i characters.

To include the last character in a string of length n , use a stop index of n

16

title = "crossroads"
all three examples below give exactly the same value
roads_one = title[5:10]
roads_two = title[5:len(title)]
roads_three = title[5:]

print(roads_one) # prints "roads"
print(roads_one == roads_two == roads_three) # prints True

This last version—title[5:]—is a useful syntactical

shorthand for getting all characters in title at & after index 5 .

Slicing: Shortcuts

17

title = "crossroads"
both examples below give exactly the same value
cross_one = title[0:5]
cross_two = title[:5]

print(cross_one) # prints "cross"
print(cross_one == cross_two) # prints True

Can similarly omit the first number to take everything from the beginning.

Slicing: Shortcuts

18

Activity: Slicing and More

For a phone number written like "215-898-3500" , write a slicing

expression that gets the area code, or the first three digits. (S7)

Some sociopaths well-adjusted people like to pick up a book and read the first and

last sentences. If I have a list of words in a novel called book , write an expression

that creates a list abridged that stores the first and last ten words of that list. (S8)

A file's extension is the portion of its name that is found after the first . ,

e.g. py for hello_world.py or txt for readme.txt . Write one or two

lines that give you the extension from a string containing a file's name. (S9)

Remember: list concatenation, negative indexing to count from back

Remember: find()

19

If you only want every kth element of a sequence s
starting at index i and ending at index j , you can write

s[i:j:k]

>>> "AaBbCc"[2:5:2]
'BC'

Recap: Slicing and Stepping

Start at index 2 ("B"), take that character.

Take 2 steps forward to index 4 .

Since index 4 is before stop index 5 , take it. ("C")

Take 2 steps forward to index 6 .

Since index 6 is not before stop index 5 , stop.

20

Omit the start and stop values to get a "slice" of the entire string but in reverse.

>>> "stop"[::-1]
'pots'

A little confusing to parse why that works, but a handy tool to keep in mind.

Recap: Reversing

21

Activity: More Slicing
Get "eee" from "sequences" using slicing. (S10)

What's printed? (M2)

lst = ["global", "array", "of", "chumps," "loafers", "and", "associates"]
my_slice = lst[::2]
print(len(my_slice))

What's printed? (M3)

lst = [4, (4, 5, 6), 8, [9, 10, 100]]
my_slice = lst[1:5:2]
print(len(my_slice))

In the previous question, what's the value of 4 in my_slice? (M4)

A: 0, B: 1, C: 2, D: 3

A: 1, B: 2, C: 6, D: 8

A: True , B: False
22

	Beyond while True
	Beyond while True
	Counting Loop
	More Iteration to Come
	rivalry.py: Animations that Stop
	Example: Guessing Game
	guessing.py
	Example: Timer
	timer.py
	Recap: Sequences
	Recap: Sequences
	Growing Lists: append
	Improving guessing.py
	Improving guessing.py
	Recap: Indexing in Sequences
	Recap: Slicing
	Slicing: Starting and Stopping
	Slicing: Shortcuts
	Slicing: Shortcuts
	Activity: Slicing and More
	Recap: Slicing and Stepping
	Recap: Reversing
	Activity: More Slicing

