
CIS 1100
Searching (Lecture) Python

Fall 2024

University of Pennsylvania

Given a sequence and a target element, find a position at which that target

is found inside of the sequence, or report that the target cannot be found.

Both linear search and binary search will have the following signatures:

def linear_search(seq, target):
 ...

Review: Search as a Problem

1

What do the following function calls return?

Activity: Searching Practice

(S7) linear_search([3, 1, 10, 17, 23, 31, -23], -23)

(S8) linear_search([2, 2, 4, 8, 12, 14, 16, 32, 64], 2)

(S9) binary_search([2, 2, 4, 8, 12, 14, 16, 32, 64], 2)

(S10) binary_search([3, 1, 10, 17, 23, 31, -23], -23)

2

Review: Particulars of Binary Search

Doesn't necessarily return the lowest index at which the target appears in the sequence

Doesn't necessarily give the correct answer if the input sequence is not sorted

3

If you want to put a sequence in sorted order, you can use either sort() or sorted()

New: Sorting

.sort() is a method that sorts a sequence in-place, meaning that the

sequence itself is changed and the function doesn't return anything.

sorted() is a function that returns a new (shallow) copy of the

input sequence in sorted order. The original sequence is unchanged.

4

In (L11), describe what happens when the program is run—what are the outputs? Why?

list_of_numbers = generate_random_number_list() # pretend this exists
sorted_list = list_of_numbers.sort()
smallest = sorted_list[0]
largest = sorted_list[-1]
print("The range of numbers generated is ({smallest}, {largest}).")

Activity: sort() and sorted()

5

In-place operations like .sort() or .reverse() modify

the object they're called on without returning a value.

In-Place Operations

These permanently modify the thing you're calling them on,

even if that thing was an argument passed into another function.

These methods do not return any values, so you

probably don't mean to save the results in a variable

6

Several operations exist for lists/sequences:

Checking for Membership

.index(target) performs a linear search to find the index of a target on a list.

in performs a linear search to find whether a target element is contained in a list.

Tragic: raises an error if target isn't found in the list

7

(C12)

Assume we have a function linear_search(seq, target) . Can you write a short

function linear_search_contains(seq, target) that...

Activity: linear_search_contains

returns exactly what target in seq would return (i.e. a boolean)

calls linear_search() as a helper function

8

We could do the same for binary_search_contains() :

def binary_search_contains(seq, target):
 return binary_search(seq, target) != -1

But we do need to be careful making sure that seq
is sorted to start, otherwise we have a problem.

Generalizing

9

We could even make binary_search_contains() "safe":

def safe_binary_search_contains(seq, target):
 seq = sorted(seq)
 return binary_search(seq, target) != -1

This leads to an interesting question...

Generalizing

10

We say that binary search is faster "on average" than linear search.

So why does Python use linear search to implement in and .index() when we could just

sort the sequence and use binary search instead?

Recall: Binary Search is "Faster" On Average

11

All code takes time to run. A simple heuristic is that a function's runtime

is proportional to the number of iterations of the loops it takes to execute.

Let's approximate "speed" with printed snakes:

def linear_search_contains(seq, target):
 for idx, element in enumerate(sequence):
 print(" ")
 if element == target:
 return True
 return False

(L13): How many snakes are printed if we run

linear_search_contains(range(100), 13)?

Speedy Snakes

12

def binary_search_contains(sequence, target):
 low_index, high_index = 0, len(sequence) - 1
 while low_index <= high_index:
 print(" ")
 middle_index = (low_index + high_index) // 2
 if target < sequence[middle_index]:
 high_index = middle_index - 1
 elif target > sequence[middle_index]:
 low_index = middle_index + 1
 else:
 return True
 return False

Also (L13): How many snakes are printed if we run

binary_search_contains(range(100), 13)?

Contains with Binary Search

13

def safe_binary_search_contains(sequence, target):
 sequence = sorted(sequence)
 low_index, high_index = 0, len(sequence) - 1
 while low_index <= high_index:
 print(" ")
 middle_index = (low_index + high_index) // 2
 if target < sequence[middle_index]:
 high_index = middle_index - 1
 elif target > sequence[middle_index]:
 low_index = middle_index + 1
 else:
 return True
 return False

Also (L13): How many snakes are printed if we run

safe_binary_search_contains(shuffle(range(100)), 13)?

Contains with Binary Search

14

sequence = sorted(sequence)

If we're just counting iterations of while loops, it looks like binary_search_contains
and safe_binary_search_contains have the same "snake price."

But this is a LIE! Because sorting also costs an appreciable amount

of time. In fact, if sequence contains 100 elements, then a call to

sorted(sequence) would print about 700 SNAKES on average!

 (this is only 192 snakes!)

A Whole Other Bundle of Snakes

15

(L15) What is the most number of snakes that a linear

search could print for a sequence of 100 numbers.

Use this result to summarize in (C16) why it's not a good idea to always use a

binary search method to check if a target value is found inside of a sequence.

Concluding...

16

class Rhyme:
 def __init__(self, first, second):
 self.first = first
 self.second = second

 def to_limerick(self):
 print(f"There once was a guy named {self.first} who thought for sure he could {self.second}")

silly = Rhyme("Steve", "leave")
silly.to_limerick()

There once was a guy named Steve who thought for sure he could leave

(If Time) __eq__()

17

rhymes_for_steve = [
 Rhyme("Steve", "leave"),
 Rhyme("Steve", "achieve"),
 Rhyme("Steve", "grieve"), # idk
 Rhyme("Steve", "leave"),
 Rhyme("Steve", "heave"),
 Rhyme("Steve", "believe")
]

Whoops, I did a duplicate. Let's just get rid of that...

rhymes_for_steve = list(set(rhymes_for_steve))
print(len(rhymes_for_steve))

Wait... still 6?

"I Need Six Rhymes On My Desk By 5PM"

18

Objects that are structurally the same as each other will

not automatically be considered to be == to each other

>>> Rhyme("Steve", "leave") == Rhyme("Steve", "leave")
False

__eq__() to the rescue!

Object Equality

19

In any class, you can write a method with the signature def
__eq__(self, other) to define how the == operation behaves.

class Rhyme:
 ... # other stuff

 def __eq__(self, other):
 return self.first == other.first and self.second == other.second

>>> Rhyme("Steve", "leave") == Rhyme("Steve", "leave")
True

__eq__ for Equality

Called a "magic method"—a method that defines the behavior of an operation

that's called in a different way than the name of the method would apply.

A perk of Dataclasses—they implement a reasonable version of __eq__ for you

20

	Searching (Lecture)
	Review: Search as a Problem
	Activity: Searching Practice
	Review: Particulars of Binary Search
	New: Sorting
	Activity: sort() and sorted()
	In-Place Operations
	Checking for Membership
	Activity: linear_search_contains
	Generalizing
	Generalizing
	Recall: Binary Search is "Faster" On Average
	Speedy Snakes
	Contains with Binary Search
	Contains with Binary Search
	A Whole Other Bundle of Snakes
	Concluding...
	(If Time) __eq__()
	"I Need Six Rhymes On My Desk By 5PM"
	Object Equality
	__eq__ for Equality

