CiIS1100

Searching (Lecture) Python
Fall 2024

University of Pennsylvania




Review: Search as a Problem

Given a sequence and a target element, find a position at which that target
Is found inside of the sequence, or report that the target cannot be found.

Both linear search and binary search will have the following signatures:

def linear search(seq, target):




Activity: Searching Practice

What do the following function calls return?

e (S7) l11near search([3, 1, 106, 17, 23, 31, -23], -23)

e (S8) l11near search([2, 2, 4, 8, 12, 14, 16, 32, 64], 2)
e (S9) binary search([2, 2, 4, 8, 12, 14, 16, 32, 64], 2)
e (S10) binary_search([3, 1, 16, 17, 23, 31, -23], -23)




Review: Particulars of Binary Search

e Doesn't necessarily return the lowest index at which the target appears in the sequence

e Doesn't necessarily give the correct answer if the input sequence is not sorted



New: Sorting

If you want to put a sequence in sorted order, you can use either soxrt () or sorted ()

e .sort() isamethod that sorts a sequence in-place, meaning that the
sequence itself is changed and the function doesn't return anything.

e sorted() isafunctionthat returns a new (shallow) copy of the
input sequence in sorted order. The original sequence is unchanged.



Activity: soxt() and soxted()

In (L11), describe what happens when the program is run—what are the outputs? Why?

list of numbers = generate_random_number_ list() # pretend this exists
sorted list = 1list of numbers.sort()

smallest = sorted list[0O]

largest = sorted list[-1]

print("The range of numbers generated is (3smallest}, ilargesti).")




In-Place Operations

In-place operations like .soxrt () or .reverse () modify
the object they're called on without returning a value.

e These permanently modify the thing you're calling them on,
even if that thing was an argument passed into another function.

e These methods do not return any values, so you
probably don't mean to save the results in a variable



Checking for Membership

Several operations exist for lists/sequences:

e .1ndex(target) performs alinear search to find the index of a target on a list.

o Tragic: raises an error if target isn't found in the list @

e 1n performs a linear search to find whether a target element is contained in a list.



Activity: 11near_search_contains

(C12)
Assume we have a function 1inear_search(seq, target).Canyou write ashort
function 11near_search_contailns(seq, target) that..

e returns exactly what target i1n seq would return (i.e. a boolean)

e calls 11near_search () as ahelper function



Generalizing

\We could do the same for binary_search _contains():

def binary_search_contains(seq, target):
return binary_search(seq, target) != -1

But we do need to be careful making sure that seq
Is sorted to start, otherwise we have a problem.



\We could even make binary search _contains() "safe":

Generalizing

def safe binary_search_contains(seq, target):
seq = sorted(seq)
return binary_search(seq, target) != -1

This leads to an interesting question...

10



Recall: Binary Search is "Faster" On Average

We say that binary search is faster "on average” than linear search.

So why does Python use linear search to implement in and . index () when we could just
sort the sequence and use binary search instead?

11



Speedy Snakes

All code takes time to run. A simple heuristic is that a function's runtime

is proportional to the number of iterations of the loops it takes to execute.
Let's approximate "speed” with printed snakes: ¢J

def linear_search_contains(seq, target):
for idx, element in enumerate(sequence):
print("@d")
if element == target:
retuxrn True
return False

(L13): How many snakes are printed if we run
linear_search_contains(range(100), 13)?

12



Contains with Binary Search

def binary search _contains(sequence, target):
low_index, high_index = 0, len(sequence) - 1
while low_index <= high_index:
print("@")
middle_index = (low_index + high_index) // 2
if target < sequence[middle_index]:
high_i1ndex = middle_index - 1
elif target > sequence[middle_index]:
low_i1ndex = middle_index + 1
else:
return True

retuxrn False

Also (L13): How many snakes are printed if we run
binary_ search_contains(range(100), 13)?

13



Contains with Binary Search

def safe binary _search_contains(sequence, target):
sequence = sorted(sequence)
low_index, high_index = 0, len(sequence) - 1
while low_index <= high_index:
print("@)")
middle_index = (low_index + high_index) // 2
if target < sequence[middle_index]:
high_index = middle_index - 1
elif target > sequence[middle_index]:
low_index = middle _index + 1
else:
return True
return False

Also (L13): How many snakes are printed if we run
safe binary search_contains(shuffle(range(100)), 13)?

14



A \Whole Other Bundle of Snhakes

sequence = sorted(sequence)

If we're just counting iterations of while loops, it looks like binary search contains
and safe _binary search _contains have the same "snake price."

But this is a LIE! Because sorting also costs an appreciable amount
of time. In fact, if sequence contains 100 elements, then a call to

sorted (sequence) would print about 700 SNAKES on average!

WNAAANANNNAANAAANAANANANANAAANAA AN AANAAAAAAAAAD
WNANNANNNNANANANAAAAAANAAAAANAANANANANADAANANA NN AN AN AN A
WNANNNNANANNNNAAAAAAAAAAAAAAAAAAAANAANAAN N
WNAAANAANNNANAAANAANNAAAAAA AN AAAAA AN AN A
WAAAAANNNANAANAAAAANANAAAAA AN AAAAA AN AAAAD
WNANNNNNNNNNAAAAADAADADADAAAA A (this is only 192 snakes!)

15



Concluding...

(L15) What is the most number of snakes that a linear
search could print for a sequence of 100 numbers.

Use this result to summarize in (C16) why it's not a good idea to always use a
binary search method to check if a target value is found inside of a sequence.

16



(If Time) __eq__ ()

class Rhyme:
def init (self, first, second):
self.first = first
self.second = second

def to limerick(self):
print (f"There once was a guy named iself.first? who thought for sure he could iself.second?")

silly = Rhyme("Steve", "leave")
silly.to_limerick()

=

There once was a guy named Steve who thought for sure he could leave

17



"INeed Six Rhymes On My Desk By 5PM"

rhymes _for steve = [

Rhyme ("Steve", "leave"),

Rhyme ("Steve", "achieve"),
Rhyme ("Steve", "grieve"), # 1idk
Rhyme ("Steve", "leave"),

Rhyme ("Steve", "heave"),

Rhyme ("Steve", "believe")

]

Whoops, | did a duplicate. Let's just get rid of that...

rhymes _for steve = list(set(rhymes _for steve))
print(len(rhymes_for_steve))

Wait... still 672

18



Objects that are structurally the same as each other will
not automatically be considered to be == to each other @

Object Equality

>>> Rhyme("Steve", "leave") == Rhyme("Steve", "leave")

False

__eq__ () totherescue!

19



__eq__ forEquality

In any class, you can write a method with the signature det
eq__(self, other) todefine how the == operation behaves.

e Called a "magic method"—a method that defines the behavior of an operation
that's called in a different way than the name of the method would apply.

e A perk of Dataclasses—they implement a reasonable versionof __eq__ for you

class Rhyme:
. # other stuff

def eq (self, other):
return self.first == other.first and self.second == other.second

>>> Rhyme("Steve", "leave") == Rhyme("Steve", "leave")
True

20



	Searching (Lecture)
	Review: Search as a Problem
	Activity: Searching Practice
	Review: Particulars of Binary Search
	New: Sorting
	Activity: sort() and sorted()
	In-Place Operations
	Checking for Membership
	Activity: linear_search_contains
	Generalizing
	Generalizing
	Recall: Binary Search is "Faster" On Average
	Speedy Snakes
	Contains with Binary Search
	Contains with Binary Search
	A Whole Other Bundle of Snakes
	Concluding...
	(If Time) __eq__()
	"I Need Six Rhymes On My Desk By 5PM"
	Object Equality
	__eq__ for Equality


