
CIS 1100
Object Oriented
Programming

Python

Fall 2024

University of Pennsylvania

Learning Objectives
Describe the purpose of a class in Python

Create new data types by defining classes in Python

and construct objects that belong to that data type.

Define, understand the purpose of, and write member attributes and methods

Write an __init__ method for a class

Understand and use the self as a method argument

Expand understanding of variable scope in Python

1

CIS 1100
Objects Python

Fall 2024

University of Pennsylvania

Our primitive types (int , float , bool , etc.) are called primitive in part because:

Objects: Beyond Primitives

they express simple, individual values

they have limited and fixed sets of operations that

are generally defined by simple symbol operators

2

Strings are not primitive in Python, and so we could

call methods on them to perform certain operations:

name = "Harry"
idx_of_r = name.find("r")
yelling = name.upper()

Strings are examples of objects—more complex than primitives!

Objects: Beyond Primitives

3

Lists, for example, are also non-primitive objects

rhyme = ["What's", "The", "Story", "Morning", "Glory"]
rhyme.append("?")
rhyme.extend(["By", "Oasis"])

Objects: Beyond Primitives

4

Objects are values in Python that:

Objects: Definition

can store their own attributes

can have functions (methods) called on them directly

5

Python has a built-in library called datetime . Inside

of this library live a few new types of object, including:

New Example: datetime.datetime

datetime (yes, same as the library name)

timedelta

6

Use . syntax to access attributes of objects and to call methods on objects

>>> from datetime import datetime, timedelta
>>> right_now = datetime.now() # returns a datetime object with the current time
>>> right_now
2024-09-17 11:59:57.608895
>>> right_now.replace(year=2014) # call the replace method on the datetime object
2014-09-17 11:59:57.608895
>>> right_now.year # access the year attribute of the object
2024
>>> offset = timedelta(days=60) # represent a duration of 60 days
>>> offset
60 days, 0:00:00
>>> right_now + offset # move forward the datetime by the timedelta with + operator
2024-11-16 11:59:57.608895

Using Objects

7

CIS 1100
Classes & State Python

Fall 2024

University of Pennsylvania

A class in Python is a construct that allows us to "bundle data and functionality together." *

* From the Python documentation on classes

Classes

A class defines a new data type!

Allows instances of that class to be created.

8

State is the notion of information stored by a program or

an entity within a program that may change over time.

Classes & State

Previously: represent state by defining some variables storing primitive values

Next: Create instances of a class that store their

own attributes that can be changed over time.

9

State arises from information stored in our program.

The "state of a square" in a drawing is represented by

the values of the variables used to draw it over time:

import penndraw as pd
x_center = 0.5 # SETUP
while True:
 pd.clear()
 pd.filled_square(x_center, 0.5, 0.1)
 x_center += 0.01
 if x_center - 0.1 > 1.0:
 x_center = -0.1
 pd.advance()

Classes & State

10

State arises from information stored in our program—as long as

we remember what each variable is supposed to be representing!

Classes & State

Classes allow us to define objects that keep track of their own attributes

...their own state!

11

CIS 1100
Abstraction Python

Fall 2024

University of Pennsylvania

Classes provide abstractions of real-world entities that

can be represented and manipulated by a program.

Class Design & Abstraction

If we write a program designed to "register students for courses", the entities

of the student and the course are not literally contained within a computer.

12

An abstraction of an entity is the set of information

properties relevant to a stakeholder about an entity

Abstraction in Concrete Terms

Information Property (or just "property"): a named,

objective and quantifiable aspect of an entity

Stakeholder: a real or imagined person (or a class of people) who

is seen as the audience for, or user of the abstraction being defined

13

...and no, I'm not talking about Cinema Studies!

Suppose we are writing software for an online storefront

and we want to sell digital & physical copies of movies.

A Class for Movies

The entity: a Movie

The stakeholders: someone shopping for a movie on an online storefront

14

An Example of an Abstraction of a Movie

15

Entity: Movie

Properties:

A Class for Movies

Title

Year

Length

Genre

Release type

Price

16

Class Design

Entity: Movie

Properties:

Title (str)

Year (int)

Length (int)

Genre (str)

Release type (str)

Price (float)

17

Title Year Length Genre Release Price

"Moneyball" 2011 133 "Sports" "Blu-ray" 15.00

"Gone With the Wind" 1939 219 "Drama" "Streaming" 10.95

"Jurassic Park" 1993 127 "SciFi" "DVD" 12.50

"Pirates of the Caribbean" 2003 143 "Comedy" "Blu-ray" 17.50

Instances of the Movie Class
The header of the table represents the properties that all entities of this class will have.

Each row represents an individual instance of the class

All movies can be described using the same properties

Different movies have different values for those properties

18

Classes define data types that represent abstractions of real or imaginary entities.

We can create instances of these classes in our programs called objects.

Classes and Objects

(hence: Object Oriented Programming)

An object always belongs to a class and therefore

has all of the properties that the class specifies.

Any individual object may have different values for

those properties than any other object of that type.

19

CIS 1100
Data Classes Python

Fall 2024

University of Pennsylvania

In Python, a dataclass is the simplest kind of class.

Our movie entity modeled by a dictionary
favorite_movie = {"name" : "The Worst Person in the World",
 "year" : 2022, "length" : 132, "genre" : "Drama",
 "release" : "Blu-ray", "price" : 27.10}

dataclasses

Defined (in most basic case) just by what properties that members of this class should have.

Behaves very similar to a dict or a row of a DataFrame ,

except that we define the keys ahead of time.

20

Going to work through the features & syntax of dataclasses
with examples first, then recap the rules at the end...

from dataclasses import dataclass

@dataclass
class Movie:
 name: str
 year: int
 length: int
 genre: str
 release: str
 price: float

Defines a new data type for a Movie class.

Movie as a dataclass

21

This snippet creates two new Movie instances:

favorite_movie = Movie('The Worst Person in the World', 2022,
 132, 'Drama', 'Blu-ray', 27.1)

not_so_good_movie = Movie('Trap', 2024, 108, 'Thriller', 'Streaming', 9.99)

Creating Movie Instances

Provide the properties of each Movie as argument

to the Movie() function to initialize a new Movie
Give the properties in the order that the dataclass has them defined

Defining the dataclass makes this special function available for us automatically

22

The attributes of an object are the names for the variables that store the properties of an object

favorite_movie.length
not_so_good_movie.title

Remember: a class defines attributes, but only an object

has values for those attributes. This doesn't work:

>>> Movie.price
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: type object 'Movie' has no attribute 'price'

Getting the Attributes of a Movie

often we'll elide the difference between an attribute and a property—not that important

access with object_name.attribute_name , e.g.:

23

Objects that belong to a dataclass can be printed easily:

>>> print(not_so_good_movie)
Movie(name='Trap', year=2024, length=109, genre='Thriller', release='Streaming', price=9.99)

The string representation points out how an instance of

a dataclass is a lot like a tuple with named values.

Printing Movies

24

Since we know what attributes a Movie object will have, we

could write functions that expect inputs with type Movie :

def stylize_title(movie):
 return f"{movie.name} ({movie.year})"

>>> stylize_title(favorite_movie)
'The Worst Person in the World (2022)'
>>> stylize_title(not_so_good_movie)
'Trap (2024)'

We'll come back to classes & functions soon.

Passing Movies Around

25

The attributes of a dataclass are modifiable the same way variables are usually modifiable.

Say we need to reduce the price of a Movie in our catalogue because it's not so good...

>>> not_so_good_movie.price
9.99
>>> not_so_good_movie.price = 5.99
>>> not_so_good_movie.price
5.99

Modifying Attributes

26

Create by giving the dataclass a name and specifying the set of attributes with their types:

@dataclass
class MyClass:
 attr_one: type
 attr_two: type
 ...

Access (either to read or write) attributes of a dataclass by

referring to the attribute name of a particular object of the class:

my_object.attr_one
my_object.attr_two += 13

Print objects that belong to a dataclass with print(my_object) .

A dataclass in General:

27

CIS 1100
Classes Python

Fall 2024

University of Pennsylvania

dataclass vs. class
Defining dataclass is a quick way of creating a

new data type defined entirely by what it knows.

A class can be written in a way that gives us control over object creation

Makes assumptions about how we want to create objects of this type

i.e. assumes that we know all the values of the

attributes when we want to create an instance

Disclaimer: a dataclass is also a class and so it

can actually do all of the next things we're going to do

28

A class typically contains three essential elements:

Features of Classes

attribute variables that define the type's properties

methods that define the type's behaviors

a special initializer method to define how objects of this type should be created

(this is actually where the attribute variables are set)

29

Here's a class for a square shape:

import penndraw as pd
class Square:
 def __init__(self, x, y, hsl):
 self.x_center = x
 self.y_center = y
 self.half_side_length = hsl

 def move_by(self, dx, dy):
 self.x_center += dx
 self.y_center += dy

 def draw(self):
 pd.square(self.x_center, self.y_center, self.half_side_length)

Features of Classes

30

__init__ : the Initializer
Sometimes we'll—somewhat inaccurately—call this a constructor.

Special function defined within a class that defines how we create an object of this class.

Like with a dataclass , we create a new instance of MyClass by calling MyClass()
e.g. create a new Square by calling Square(0.5, 0.5, 0.2)

__init__ is actually the function that defines the behavior of this call

31

The Square 's attribute variables are actually

declared and created within the body of __init__ !

If we call Square(0.5, 0.5, 0.2) :

class Square:
 def __init__(self, x, y, hsl):
 self.x_center = x
 self.y_center = y
 self.half_side_length = hsl
 ...

__init__ & Attributes

x gets the value of 0.5 in the call to __init__

we declare a new variable called x_center that belongs to the object that we're creating

we store the value of x inside of the variable

x_center that will live as long as the object does

32

Well, according to Aristotle (according

to Wikipedia), the psyche is the

core essence of a living being...

What is Self?

33

Just kidding.

self is the name of a variable that we use to refer to the object itself.

What is self ?

self.x_center is the x_center variable that

belongs to the object that we're working with

Always use self.attr_name to refer to the

attribute called attr_name from within the class

34

class Square:
 def __init__(self, x, y, hsl):
 self.x_center = x
 self.y_center = y
 self.half_side_length = hsl
 self.area = (2 * half_side_length) * (2 * half_side_length)

will lead to a NameError down the line:

NameError: name 'half_side_length' is not defined

Don't Forget Your self !

35

Better:

class Square:
 def __init__(self, x, y, hsl):
 self.x_center = x
 self.y_center = y
 self.half_side_length = hsl
 self.area = (2 * self.half_side_length) * (2 * self.half_side_length)

Don't Forget Your self !

36

If we define __init__ like we have, then we can create

new Square objects and access their properties:

small = Square(0.3, 0.3, 0.02)
big = Square(0.8, 0.8, 0.2)

small_perimeter = small.half_side_length * 2 * 4
big_center = (big.x_center, big.y_center)

Outside of the class , you access an object's attribute variables

by appending .attr_name to the end of the object's name.

Accessing Attribute Variables

37

CIS 1100
Methods Python

Fall 2024

University of Pennsylvania

38

Functions defined within a class are the methods that objects of that class can perform.

Methods

These represent the behaviors that the class' entities should be expected to perform

Every object from a class (usually) has the same methods and the same attribute variables.

For a Dog class, a method might be bark()

For a Square class, a method might be move_by(dx, dy)

The values of the attributes differ between the objects.

 Since methods behave differently based on the

attributes, they can behave differently for different objects.

39

Methods are really just functions—only a couple small differences:

class Square:
 def __init__(self, x, y, hsl):
 self.x_center = x
 self.y_center = y
 self.half_side_length = hsl

 def move_by(self, dx, dy):
 self.x_center += dx # self.x_center was declared outside of this method!
 self.y_center += dy

 def draw(self):
 pd.square(self.x_center, self.y_center, self.half_side_length)

Writing Methods

First argument of a method should always be self

Methods can refer to attribute variables that are declared outside the body of the method (!)

40

Methods are functions that

belong to an object, so they are

called (mostly) like any function

my_square = Square(0.4, 0.4, 0.2)
my_square.move_by(0.1, 0.1)
my_square.draw()

Using Methods

Call by name and pass in

arguments within parentheses

Make sure to call the method

on the object that you want

to perform that behavior!

41

You might have several instances

of a class in your program.

left_square = Square(0.1, 0.2, 0.1)
right_square = Square(0.9, 0.2, 0.1)
left_square.move_by(0, 0.5)
left_square.draw()
right_square.draw()

Methods Are Called
on Individual Objects

A method called on an object

should modify/use just that object.

Other objects will be unchanged

by another object's method call.

42

CIS 1100
Stopwatch Demo Python

Fall 2024

University of Pennsylvania

43

Let's design a class for a stopwatch. Our requirements are that:

Building a Stopwatch

Each stopwatch that we create should be able to

keep time separately from any other stopwatches.

A stopwatch should be able to start a timer, display the current timer, and stop a timer.

When we create a stopwatch, it should not be running at first

44

What does a stopwatch need to keep track of in order to be effective?

Stopwatch: Attributes

It needs to be able to display how long it's been running, but

that's a piece of information that will need to be calculated.

A stopwatch should know whether it's currently

running, when it was started, and when it was stopped.

45

The attributes of a stopwatch can be started_at , stopped_at ,

and is_running . What should the initial values of these variables be?

Stopwatch: __init__

By requirements, is_running should be False to start

Since the stopwatch isn't running at first, starting values

of started_at and stopped_at are just placeholders.

Don't actually need any information passed in to create a new stopwatch.

Different from the Square class where we

provided initial values for each attribute—this is OK!

46

from datetime import datetime
class Stopwatch:
 def __init__(self):
 placeholder = datetime.now()
 self.started_at = placeholder
 self.stopped_at = placeholder
 self.is_running = False

Stopwatch: __init__

47

A stopwatch should be able to start a timer, display the current timer, and stop a timer.

Stopwatch: Methods

start() : start the timer, or do nothing if the stopwatch is running.

display() :

stop() : stop the timer if it is running, or do nothing if it is not.

if the timer is running, show the time elapsed since the stopwatch was started

if the timer is not running, show the time elapsed between start() and stop()

48

from datetime import datetime
class Stopwatch:
 ... # __init__ omitted for space
 def start(self):
 if not self.is_running:
 self.started_at = datetime.now()
 self.is_running = True

 def stop(self):
 if self.is_running:
 self.stopped_at = datetime.now()
 self.is_running = False

 def display(self):
 if self.is_running:
 elapsed = datetime.now() - self.started_at
 verb = "Running"
 else:
 elapsed = self.stopped_at - self.started_at
 verb = "Ran"
 print(f"{verb} for {elapsed.total_seconds()} seconds.")

Stopwatch: Methods

49

Stopwatch: Demo

50

51

	Object Oriented Programming
	Learning Objectives

	Objects
	Objects: Beyond Primitives
	Objects: Beyond Primitives
	Objects: Beyond Primitives
	Objects: Definition
	New Example: datetime.datetime
	Using Objects

	Classes & State
	Classes
	Classes & State
	Classes & State
	Classes & State

	Abstraction
	Class Design & Abstraction
	Abstraction in Concrete Terms
	A Class for Movies
	An Example of an Abstraction of a Movie
	A Class for Movies

	Class Design
	Instances of the Movie Class
	Classes and Objects

	Data Classes
	dataclasses
	Movie as a dataclass
	Creating Movie Instances
	Getting the Attributes of a Movie
	Printing Movies
	Passing Movies Around
	Modifying Attributes
	A dataclass in General:

	Classes
	dataclass vs. class
	Features of Classes
	Features of Classes
	__init__: the Initializer
	__init__ & Attributes
	What is Self?
	What is self?
	Don't Forget Your self!
	Don't Forget Your self!
	Accessing Attribute Variables

	Methods
	Methods
	Writing Methods
	Using Methods
	Methods Are Called on Individual Objects

	Stopwatch Demo
	Building a Stopwatch
	Stopwatch: Attributes
	Stopwatch: __init__
	Stopwatch: __init__
	Stopwatch: Methods
	Stopwatch: Methods
	Stopwatch: Demo

