

Learning Objectives
Write PennDraw programs that create moving images

Get introduced to a basic form of iteration with the "infinite while loop"

Write programs that react in real time to user inputs

Understand how to check for & use mouse input with PennDraw

Understand how to check for & use keyboard input with PennDraw

1

Animation as a Model
For static images, we picked

the positions, sizes, &

colors of our shapes once.

Smooth animation is

achieved by showing a lot of

similar images very quickly

A "flipbook" model

Screen is updated

~30 times per second

Shapes will change position, size,

color slightly with each update

2

Frames
Animations as "flipbooks" require that we draw many images per second

A frame consists of a set of shapes rendered at a specific moment in time

Call these images frames

More frames per second ("higher FPS") smoother animation

Different frames typically have the same shapes but drawn in different ways

3

Animations usually include a setup and an animation loop.

import penndraw as pd
SETUP: This code is run just one time!
pd.set_canvas_size(500, 500)
x_center = 0.5
y_center = 0.5
half_side = 0.1
pd.set_pen_color(pd.HSS_BLUE)
ANIMATION LOOP: This code is run many times per second,
over and over and over and over again.
while True:
 pd.clear()
 pd.filled_square(x_center, y_center, half_side)
 x_center += 0.01
 if x_center > 1 + half_side:
 x_center = -half_side
 pd.advance() # Necessary at the end of the loop

Drawing Frames in PennDraw

4

Animated programs usually start with a "setup" block, where we:

import penndraw as pd
pd.set_canvas_size(500, 500)
x_center = 0.5
y_center = 0.5
half_side = 0.1
pd.set_pen_color(pd.HSS_BLUE)

Animating: the Setup

choose settings, like canvas size

declare variables that we will use to draw each frame of the animation

do anything that needs to happen only one time.

variables will vary, but we can pick their initial values (deciding how the animation starts)

5

while , like if , is a keyword that allows us to control the flow of a program.

while expression:
 do_this()
 do_that()

When we reach the while , we test its condition. If True , we execute

the statements in the body. Then, we test the condition again.

Animating: the while True Loop

Different from a conditional (if), where we only test ONCE!

If the expression is literally True , we will loop here forever...

6

The body of the while loop is our animation loop:

Animating: the while True Loop

runs many times per second

runs indefinitely until the program is manually stopped

 allows us to draw many frames per second, doing something slightly different each time.

7

For each frame,

1. decide whether to clear the screen

i. Clearing the screen all previous shapes disappear, only most recent shape is visible

ii. Not clearing most recent frame is drawn on

top of other frames, which might still be visible

2. draw the next frame based on current properties of the shapes

i. "properties of the shapes" usually stored in variables

3. update the properties of the shapes for the next frame

4. pd.advance() make everything show up on screen

i. Always need this at the end of the loop.

Animating: Animation Loop Recipe

8

Produces a square that slides left-to-right across the canvas.

import penndraw as pd
x_center = 0.5 # SETUP
while True:
 pd.clear() # 1. clear the screen
 pd.filled_square(x_center, 0.5, 0.1) # 2. draw this frame
 x_center += 0.01 # 3. update shapes for next frame
 pd.advance() # 4. pd.advance()

Example Animation Loop: Sliding Square

9

Modify the program to include print statements, time tracking:

import penndraw as pd
x_center = 0.5 # SETUP
loop_num = 1
while True:
 pd.clear() # 1. clear the screen
 pd.filled_square(x_center, 0.5, 0.1) # 2. draw this frame
 print(f"In Loop #{loop_num}, square is at x={x_center}")
 x_center += 0.01 # 3. update shapes for next frame
 pd.advance() # 4. pd.advance()

Example Animation Loop: Sliding Square

10

Modify the program to include print statements, time tracking:

import penndraw as pd
x_center = 0.5 # SETUP
loop_num = 1
while True:
 pd.clear() # 1. clear the screen
 pd.filled_square(x_center, 0.5, 0.1) # 2. draw this frame
 print(f"In Loop #{loop_num}, square is at x={x_center}")
 x_center += 0.01 # 3. update shapes for next frame
 loop_num += 1
 pd.advance() # 4. pd.advance()

In Loop #1, square is at x=0.5
In Loop #2, square is at x=0.51
In Loop #3, square is at x=0.52
...

Example Animation Loop: Sliding Square

11

import penndraw as pd
x_center = 0.5 # SETUP
while True:
 pd.clear() # 1. clear the screen
 pd.filled_square(x_center, 0.5, 0.1) # 2. draw this frame
 x_center += 0.01 # 3. update shapes for next frame
 pd.advance() # 4. pd.advance()

After a while, x_center will be very big.

Controlling the Slide

If x_center is much bigger than 1.0 , the square won't be visible at all!

Want to add some logic to make sure the square resets after a while

12

What does "off the screen" mean?

Controlling the Slide

Happens when a shape is all the way off the top, bottom, left, or right sides of the screen.

If the square is always heading to the right, it'll fall off the right side

Since the square has a half_length of 0.1 , the

coordinate of its left side is always x_center - 0.1 .

 the square is offscreen when x_center - 0.1 > 1.0

13

Making the square reset to the left once it disappears:

import penndraw as pd
x_center = 0.5 # SETUP
while True:
 pd.clear() # 1. clear the screen
 pd.filled_square(x_center, 0.5, 0.1) # 2. draw this frame
 x_center += 0.01 # 3. update shapes for next frame
 if x_center - 0.1 > 1.0:
 x_center = -0.1
 pd.advance() # 4. pd.advance()

Controlling the Slide

After we update the square, check if it's offscreen

If the square is offscreen, move it all the way to the left of the screen

If the square is not offscreen, don't do anything else extra

14

You always need a call to pd.advance() at the end

of your animation loop. Otherwise nothing shows up.

Animation: Advancing

15

PennDraw includes a few tools useful for handling cursor position & clicking:

Function
Return

Type
Description

pd.mouse_pressed() bool Returns True if the mouse is being held this frame.

pd.mouse_x() float
Returns the x coordinate of the mouse's

current location, e.g. 0.9 or 0.1443

pd.mouse_y() float
Returns the y coordinate of the mouse's

current location, e.g. 0.9 or 0.1443

Clicking into Place

16

import penndraw as pd
num_clicks = 0;
while True:
 pd.clear()
 pd.text(0.5, 0.5, f"Number of Clicks: {num_clicks}")
 if pd.mouse_pressed():
 num_clicks = num_clicks + 1
 pd.advance()

Each frame, if we click the mouse, increment num_clicks .

Click Counter

17

import penndraw as pd

pd.set_canvas_size(500, 500)
x_center = 0.5
y_center = 0.5
half_side = 0.1
pd.set_pen_color(pd.HSS_BLUE)

while True:
 pd.clear()
 x_center = pd.mouse_x() # Ask for the x-coordinate of the cursor
 y_center = pd.mouse_y() # Ask for the y-coordinate of the cursor
 if pd.mouse_pressed(): # Ask whether the mouse is being clicked
 pd.set_pen_color(pd.HSS_RED)
 else:
 pd.set_pen_color(pd.HSS_BLUE)
 pd.filled_square(x_center, y_center, half_side)
 pd.advance()

Following Square

18

User key presses can also be registered!

Function Return Type Description

pd.has_next_key_typed() bool Returns True if a key is currently being held

pd.next_key_typed() str Returns the key currently being held down.

 Don't use next_key_typed() without checking has_next_key_typed() first!

"Keys" to Success

19

The value produced by pd.next_key_typed() is

a string with a length of one: just a single character.

key = pd.next_key_typed()

Checking Keys

To see if a specific key was pressed:

To see if the key was a lowercase letter:

To see if the key was a digit:

if key == "x": ... or if key == "!": ... e.g.

if "a" <= key <= "z": ...

if "0" <= key <= "9": ...

20

import penndraw as pd
on = False
while True:
 if on:
 pd.clear(pd.BLACK)
 else:
 pd.clear(pd.YELLOW)

 if pd.has_next_key_typed():
 key = pd.next_key_typed()
 if key == "x":
 on = not on
 pd.advance()

Light Switch

21

	
	Learning Objectives

	
	Animation as a Model
	Frames
	Drawing Frames in PennDraw
	Animating: the Setup
	Animating: the while True Loop
	Animating: the while True Loop
	Animating: Animation Loop Recipe
	Example Animation Loop: Sliding Square
	Example Animation Loop: Sliding Square
	Example Animation Loop: Sliding Square
	Controlling the Slide
	Controlling the Slide
	Controlling the Slide
	Animation: Advancing

	
	Clicking into Place
	Click Counter
	Following Square

	
	"Keys" to Success
	Checking Keys
	Light Switch

