Animation &
Interactivity




Learning Objectives

e \Write PennDraw programs that create moving images
e Getintroduced to a basic form of iteration with the "infinite while loop"

e \Write programs that react in real time to user inputs
o Understand how to check for & use mouse input with PennDraw

o Understand how to check for & use keyboard input with PennDraw






Animation as a Model

e For static images, we picked
the positions, sizes, &
colors of our shapes once.

e Smooth animationis
achieved by showing a lot of

similar images very quickly
o A "flipbook" model

o Screen is updated

~30 times per second

o Shapes will change position, size,
color slightly with each update



Frames

e Animations as "flipbooks" require that we draw many images per second
o Call these images frames

o More frames per second ("higher FPS") # smoother animation

e Aframe consists of a set of shapes rendered at a specific moment in time

o Different frames typically have the same shapes but drawn in different ways



Drawing Frames in PennDraw

Animations usually include a setup and an animation loop.

impoxt penndraw as pd
# SETUP: This code is run just one time!
pd.set_canvas_size (500, 500)
X_center 0.5
y_center 0.5
half side = 0.1
pd.set _pen_color(pd.HSS BLUE)
# ANIMATION LOOP: This code i1s run many times per second,
# over and over and over and over again.
while True:
pd.clear()
pd.filled _square(x_center, y_center, half side)
X_center += 0.01
if x _center > 1 + half side:
X_center = -half side
pd.advance() # Necessary at the end of the loop




Animating: the Setup

Animated programs usually start with a "setup” block, where we:

e choose settings, like canvas size

e declare variables that we will use to draw each frame of the animation
o variables will vary, but we can pick their initial values (deciding how the animation starts)

e do anything that needs to happen only one time.

impoxrt penndraw as pd

pd.set _canvas_size (500, 500)
X_center 5

y_center 5
half side = 0.1

pd.set _pen_color(pd.HSS BLUE)

0.
0.




Animating:the while Txrue Loop

while, like 1%, is a keyword that allows us to control the flow of a program.

while expression:
do _this()
do_that()

When we reach the while, we test its condition. If Txue, we execute

the statements in the body. Then, we test the condition again.

e Different from a conditional (1£), where we only test ONCE!

o If the expression is literally True, we will loop here forever...



Animating:the while Txrue Loop

The body of the while loop is our animation loop:

e runs many times per second
e runs indefinitely until the program is manually stopped

e ® allows usto draw many frames per second, doing something slightly different each time.



Animating: Animation Loop Recipe

For each frame,

1. decide whether to clear the screen
.. Clearing the screen # all previous shapes disappear, only most recent shape is visible

ii. Not clearing # most recent frame is drawn on
top of other frames, which might still be visible

2. draw the next frame based on current properties of the shapes
. "properties of the shapes” usually stored in variables

3. update the properties of the shapes for the next frame

4. pd.advance () = make everything show up on screen
.. Always need this at the end of the loop.



Example Animation Loop: Sliding Square

Produces a square that slides left-to-right across the canvas.

import penndraw as pd
X_center = 0.5 # SETUP
while True:

pd.clear() # 1. clear the screen
pd.filled square(x_center, 0.5, 0.1) # 2. draw this frame
X_center += 0.01 # 3. update shapes for next frame

pd.advance () # 4. pd.advance()




Example Animation Loop: Sliding Square

Modify the program to include print statements, time tracking:

import penndraw as pd

X_center = 0.5 # SETUP

loop_num = 1

while True:

nd.clear() # 1. clear the screen

od.filled square(x_center, 0.5, 0.1) # 2. draw this frame

orint (£"In Loop #31loop_numi, square 1s at x=3x_centert")

X_center += 0.01 # 3. update shapes for next frame
pd.advance () # 4. pd.advance()

10



Example Animation Loop: Sliding Square

Modify the program to include print statements, time tracking:

import penndraw as pd
X_center = 0.5 # SETUP
loop_num = 1

while True:

nd.clearxr() # 1. clear the screen
od.filled square(x_center, 0.5, 0.1) # 2. draw this frame
orint (£"In Loop #31loop_numi, square 1s at x=3x_centert")

X_center += 0.01 # 3. update shapes for next frame
loop_num += 1
pd.advance () # 4. pd.advance()

[

29

In Loop #1, square 1s at x=0.5
In Loop 42, square 1s at x=0.51
In Loop #3, square 1s at x=0.52

11



Controlling the Slide

impoxrt penndraw as pd
X_center = 0.5 # SETUP
while True:

pd.cleaxr() # 1. clear the screen
pd.filled_square(x_center, 0.5, 0.1) # 2. draw this frame

X_center += 0.01 # 3. update shapes for next frame
pd.advance () # 4. pd.advance()

After a while, Xx_center will be very big.

e If X_center is much biggerthan 1.0, the square won't be visible at all!

e \Want to add some logic to make sure the square resets after a while

12



Controlling the Slide

What does "off the screen” mean?

e Happens when a shape is all the way off the top, bottom, left, or right sides of the screen.

e If the square is always heading to the right, it'll fall off the right side

e Sincethe square hasa half_length of 0.1, the

coordinate of its left sideis a

e ® the squareis offscreenw

ways X_center - 0.1.

nen X_center - 0.1 > 1.0

13



Controlling the Slide

Making the square reset to the left once it disappears:

o After we update the square, check if it's offscreen
e |f the square is offscreen, move it all the way to the left of the screen

e |f the square is not offscreen, don't do anything else extra

impoxrt penndraw as pd
X_center = 0.5 # SETUP
while True:

pd.clear() # 1. clear the screen
pd.filled square(x_center, 0.5, 0.1) # 2. draw this frame
X_center += 0.01 # 3. update shapes for next frame
if x center - 0.1 > 1.0:
X_center = -0.1

pd.advance () # 4. pd.advance()

14



Animation: Advancing

You always need a call to pd.advance () atthe end
of your animation loop. Otherwise nothing shows up.

15



\Vlouse Input



Clicking into Place

PennDraw includes a few tools useful for handling cursor position & clicking:

Return

Function Description
Type
pd.mouse_pressed() @ bool Returns True if the mouse is being held this frame.
9 0O £10at Returns the x coordinate of the mouse's
.mouse X Oa
P = current location,e.g. 0.9 or 0.1443
Returns the y coordinate of the mouse's
pd.mouse_y () float

current location,e.g. 0.9 or 0.1443

16



Click Counter

impoxrt penndraw as pd
num_clicks = 0;
while True:
pd.clear()
pd.text(0.5, 0.5, £"Number of Clicks: {num _clicks$")
if pd.mouse_pressed():
num_clicks = num_clicks + 1
pd.advance()

Each frame, if we click the mouse, increment num_clL1cRks.

17



Following Square

import penndraw as pd

pd.set_canvas_size (500, 500)
X_center 5
y_center 5
half _side = 0.1
pd.set_pen_color(pd.HSS_BLUE)

0.
0.

while True:
pd.clear()
Xx_center = pd.mouse_x() # Ask for the x-coordinate of the cursor
y_center = pd.mouse_y() # Ask for the y-coordinate of the cursor

if pd.mouse_pressed(): # Ask whether the mouse 1s being clicked
pd.set_pen_color(pd.HSS_RED)
else:

pd.set_pen_color(pd.HSS_BLUE)
pd.filled_square(x_center, y_center, half_side)
pd.advance()

18



Kevboard Input



User key presses can also be registered!

"Keys" to Success

Function Return Type Description
pd.has_next _key typed() @ bool Returns Txrue if akey is currently being held
pd.next_key typed() str Returns the key currently being held down.

2 Don'tuse next_key_typed() without checking has_next_key typed() first! 2&

19



The value produced by pd.next_key typed() is

a string with a length of one: just a single character.

Checking Keys

key = pd.next_key typed()

e To see if a specific key was pressed:

o 1f key == "x": ...or1f key ==

e To seeif the key was a lowercase letter:

o 1f "a" <= key <= "z

e To see if the key was a digit:
o 1f "0" <= key <= "9":

. e.g.

20



Light Switch

impoxrt penndraw as pd
on = False
while True:
if on:
pd.clear(pd.BLACK)
else:
pd.clear(pd.YELLOW)

if pd.has_next_key typed():

key = pd.next_key_ typed()
if key == "x":
on = not on

pd.advance()

21



	
	Learning Objectives

	
	Animation as a Model
	Frames
	Drawing Frames in PennDraw
	Animating: the Setup
	Animating: the while True Loop
	Animating: the while True Loop
	Animating: Animation Loop Recipe
	Example Animation Loop: Sliding Square
	Example Animation Loop: Sliding Square
	Example Animation Loop: Sliding Square
	Controlling the Slide
	Controlling the Slide
	Controlling the Slide
	Animation: Advancing

	
	Clicking into Place
	Click Counter
	Following Square

	
	"Keys" to Success
	Checking Keys
	Light Switch


