
CIS 1100
Functions Practice, return ,
Keyword Arguments

Python

Fall 2024

University of Pennsylvania

Here is a function that takes a message and a number

and prints that message that number of times.

def print_n_times(msg, n):
 counter = 0
 while counter < n:
 print(msg)
 counter = counter + 1

What happens when we call the function: print_n_times("Hi!", 3)?

Recap: Calling Functions with Inputs

1

calling print_n_times("Hi!", 3)
def print_n_times(msg, n):
 # msg = "Hi!"
 # n = 3
 counter = 0
 while counter < n: # while counter < 3:
 print(msg) # print("Hi!")
 counter = counter + 1

Recap: Calling Functions with Inputs
The function's parameters are msg and n .

The function call provides two arguments: "Hi!" and 3

These are names for variables that can be used in the body of the function

These are the values that the parameter variables

will take at the start of the function execution.

2

def add_three_numbers(a, b, c):
 first_two = a + b
 last = c + first_two
 print(last)

A: True, B: False

Activity: Counting Numbers

M5: calling the function as add_three_numbers(3,
4, 7, 9) leads the program to immediately crash

M6: calling the function as add_three_numbers("three",
"four", "five") leads the program to immediately crash

3

Assuming you have a list lst containing a bunch of numbers, write a

couple of loops that print out all of the negative numbers and then all of

the non-negative numbers. (C12, but leave just a little space at the top)

e.g.

lst = [9, -19, 31, -13, 1, 2]
TODO: Your loop(s) here

-19 -13 9 31 1 2

You're not writing a whole function yet! Just write
some lines & loops like you've been doing before.

Activity: Working Towards Writing a Function

4

Write the signature for a function that prints out all of the negative

numbers and then all of the non-negative numbers. (L11)

Remember: a signature consists of a def , a function name,
and a list of parameters the function should be called with.

Activity: Working Towards Writing a Function

5

Add a signature to the code you wrote for (C12) in

order to turn it into a function that can be called.

Then, in (L13), write an example of a function call that would print out the following output:

-30 -14 3 19 8

Activity: Working Towards Writing a Function

6

Function calls are themselves expressions, meaning that they always have a value.

return is keyword that serves two purposes:

New: return

The value of a function call is determined by the value that function returns

stops function execution in its tracks

provides a value for the expression of the function call

7

def multiply_two_numbers(a, b):
 print(f"Multiplying {a} x {b}!")
 product = a * b
 return product

If we write the call multiply_two_numbers(3, 7) , then...

 # a = 3
 # b = 7
 print(f"Multiplying {a} x {b}!")
 product = a * b # product = 3 * 7
 return product # return 21

...we return the value of product , which is 21 based on

this function call. The following therefore evaluates to True :

multiply_two_numbers(3, 7) == 21

return : An Example

8

An output that's printed is not the same as an output that's returned.

Printing vs. Returning

Any call to print() will make text appear on the screen, but it doesn't produce a value

If a function is supposed to calculate and create some value (e.g. the

product of two numbers), it must return that value in the function body.

9

def our_min(lst):
 smallest = lst[0]
 for elem in lst:
 if elem < smallest:
 smallest = elem
 print(smallest)

def our_len(lst):
 running_sum = 0
 for elem in lst:
 running_sum += 1
 print(running_sum)

some_numbers = [1000, 3, 8]

result = our_min(some_numbers) # ??
print(result) # ???

result = our_len(some_numbers) # ??
print(result) # ???

These functions both compute some value and then print it but do not return it.

Functions that Have No return

10

def our_min(lst):
 smallest = lst[0]
 for elem in lst:
 if elem < smallest:
 smallest = elem
 print(smallest)

def our_len(lst):
 running_sum = 0
 for elem in lst:
 running_sum += 1
 print(running_sum)

some_numbers = [1000, 3, 8]

result = our_min(some_numbers) # 3
print(result) # None

result = our_len(some_numbers) # 3
print(result) # None

These functions both compute some value and then print it but do not return it.

Functions that Have No return

11

def our_min(lst):
 smallest = lst[0]
 for elem in lst:
 if elem < smallest:
 smallest = elem
 return smallest)

def our_len(lst):
 running_sum = 0
 for elem in lst:
 running_sum += 1
 return running_sum)

some_numbers = [1000, 3, 8]

result = our_min(some_numbers) # ???
print(result) # ???

result = our_len(some_numbers) # ???
print(result) # ???

These functions now compute some value and then return it but do not print it.

Adding return

12

def our_min(lst):
 smallest = lst[0]
 for elem in lst:
 if elem < smallest:
 smallest = elem
 return smallest)

def our_len(lst):
 running_sum = 0
 for elem in lst:
 running_sum += 1
 return running_sum)

some_numbers = [1000, 3, 8]

result = our_min(some_numbers) # Nothing!
print(result) # 3

result = our_len(some_numbers) # Nothing!
print(result) # 3

These functions now compute some value and then return it but do not print it.

Adding return

13

return works as a stopping/exit point for your program. If you

execute a line with return , you will leave that function call execution.

def print_all_above(lst, k):
 for elem in lst:
 if elem > k:
 print(elem)

print_all_above([5, 10, 15], 8)

10 15

The Point of No return ?

14

return works as a stopping/exit point for your program. If you

execute a line with return , you will leave that function call execution.

def print_first_above(lst, k):
 for elem in lst:
 if elem > k:
 print(elem)
 return

print_all_above([5, 10, 15], 8)

10

The Point of No return ?

15

return works as a stopping/exit point for your program. If you

execute a line with return , you will leave that function call execution.

def return_first_above(lst, k):
 for elem in lst:
 if elem > k:
 return elem

print_all_above([5, 10, 15], 8)

...but it does return 10 !

The Point of No return ?

16

def foo(l):
 for i, n in enumerate(l):
 if n == i:
 return n
 if n == len(l):
 print(" ")
 print(" ")

Activity

What is the value of x if we run x = foo([3, 1, 4])? (S7)

What values are printed if we run x = foo([3, 1, 4])? (S8)

What is the value of x if we run x = foo([10, 11, 12])? (S9)

What values are printed if we run x = foo([3, 1, 4])? (S10)

17

Sometimes we want our functions to be able to take default

values for their inputs. We can do this with keyword arguments.

def divide(a, b, rounding=False):
 result = a / b
 if rounding:
 return round(result)
 else:
 return result

rounding is a keyword argument that is defined by its name
as well as the default value that it takes if it is not replaced.

Keyword Arguments

18

def divide(a, b, rounding=False):
 result = a / b
 if rounding:
 return round(result)
 else:
 return result

We can do any of the following:

>>> divide(3422, 194)
17.63917525773196
>>> divide(3422, 194, rounding=True)
18
>>> divide(3422, 194, True)
18
>>> divide(3422, 194, False)
17.63917525773196

Keyword Arguments

19

Signatures:

Calls:

Rules of Keyword Arguments

All keyword parameters have to be provided AFTER all the positional ones

A keyword parameter is defined by writing identifier=<default_value>

Can have as many as you want, including ONLY keyword parameters

All keyword arguments have to be passed in AFTER

all positional inputs, but from there can be in any order

Keyword arguments can be given positionally or by

name, but you should always just give thme by name

20

def fun(a, b, c=13, d):
 pass

Good or Bad?

21

def fun(a, b, c=13, d):
 pass

BAD!

Good or Bad?

22

def fun(a=13, n="haha"):
 pass

Good or Bad?

23

def fun(a=13, n="haha"):
 pass

GOOD!

Good or Bad?

24

def fun(a, b, c=, d=13):
 pass

BAD!

Good or Bad?

25

def fun(x, y, z=0):
 pass

Then,

...
fun(3, 4, 0)
...

Good or Bad?

26

def fun(x, y, z=0):
 pass

Then,

...
fun(3, 4, 0)
...

OK, but redundant!

Good or Bad?

27

def fun(x, y, z=0):
 pass

Then,

...
fun(z=0, 3, 4)
...

Bad!

Good or Bad?

28

def fun(x, y, z=0):
 pass

Then,

...
fun(3, 4, z=x+y)
...

Bad!

Good or Bad?

29

def fun(x, y, z=0):
 pass

Then,

...
fun(3, 4)
...

Good!

Good or Bad?

30

	Functions Practice, return, Keyword Arguments
	Recap: Calling Functions with Inputs
	Recap: Calling Functions with Inputs
	Activity: Counting Numbers
	Activity: Working Towards Writing a Function
	Activity: Working Towards Writing a Function
	Activity: Working Towards Writing a Function
	New: return
	return: An Example
	Printing vs. Returning
	Functions that Have No return
	Functions that Have No return
	Adding return
	Adding return
	The Point of No return?
	The Point of No return?
	The Point of No return?
	Activity
	Keyword Arguments
	Keyword Arguments
	Rules of Keyword Arguments
	Good or Bad?
	Good or Bad?
	Good or Bad?
	Good or Bad?
	Good or Bad?
	Good or Bad?
	Good or Bad?
	Good or Bad?
	Good or Bad?
	Good or Bad?

