
CIS 1100
List Comprehensions &
Introduction to Functions

Python

Fall 2024

University of Pennsylvania

Recall a for loop that copies all characters of a string into a list:

new_list = []
for character in "ABCD":
 new_list.append(character)

"For each character in the string, place that character in the new list I am creating."

new_list = [character for character in "ABCD"]

List Comprehension Syntax

1

A basic list comprehension can be written like so:

[<expression> for variable in sequence]

List Comprehension Syntax

for variable in sequence works exactly like a regular for loop

The value of <expression> is appended to

the output list for each element in the sequence

A new list is created!

Each element in sequence gets visited one-by-one and is given the name variable

Usually write <expression> in terms of variable

2

This loop-based version...

exam_scores = [100, 0, 89, 93, 78, 67, 0]
non_zeroes = [] # [] is a list with no contents
for score in exam_scores: # For each score from the list,
 if score > 0: # if that score is not zero,
 non_zeroes.append(score) # add that score to the end of the new list.

...can be rewritten to:

exam_scores = [100, 0, 89, 93, 78, 67, 0]
non_zeroes = [score for score in exam_scores if score > 0]
print(non_zeroes)

[100, 89, 93, 78, 67]

Recall: Getting Non-Zero Exam Scores

3

Write the list comprehension so that we have a list containing

all of the elements of values but increased by 10.

values = [0, 5, 10, 23]
values_added_ten = [FILL IN THIS LIST COMPREHENSION HERE]
Should produce a list of [10, 15, 20, 33]

Write a list comprehension that makes a list containing all even length strings from names :

names = ["bob", "steve", "pete", "me", "abcde"]
even_names = [FILL IN THIS LIST COMPREHENSION HERE]
Should produce a list of ["pete", "me"]

List Comprehension Practice (L11)

4

Convert this for loop to a list comprehension that creates an equivalent list in result :

strings = ["arriving", "somewhere", "but", "not", "here"]
result = []
for i, string in enumerate(strings):
 new_entry = (" " * i) + string
 result.append(new_entry)

strings = ["arriving", "somewhere", "but", "not", "here"]
result = [FILL IN THIS LIST COMPREHENSION HERE]

List Comprehension Practice (L13)

5

CIS 1100
Functions Python

Fall 2024

University of Pennsylvania

What's happening here?

import penndraw as pd
pd.rectangle(0.5, 0.5, 0.1, 0.2)
pd.run()

Recall:

Demystifying Functions

functions are named groups of statements

those statements are executed when we call a function by name

6

def say_hello():
 print("Oh, hello there.")
 print(" ")

print("about to say hello.")
say_hello()

about to say hello.
Oh, hello there.

Functions as Named Groups of Statements

7

Here are two short functions:

def middle():
 print(" XXXX ")

def sides():
 print("XX XX")

middle()
sides()
middle()
sides()
middle()

Draw the shape that gets printed when

this program is run. What is it? (S7)

middle()
print(" XX")
middle()
sides()
middle()

Draw the shape that gets printed when

this program is run. What is it? (S8)

Activity: Calling Short Functions

8

Anatomy of a Function
Function definitions consist of the function's signature

as well as a block of statements called its body

A function signature consists of:

the function's name

the list of parameters that it takes as input.

9

def multiply_two_numbers(a, b):
 print(f"Multiplying {a} x {b}!")
 product = a * b
 return product

The signature:

def multiply_two_numbers(a, b):

Dissecting a Function

def

the function's name (multiply_two_numbers)

a pair of parentheses

a comma-separated list of parameters (a and b)

10

def multiply_two_numbers(a, b):
 print(f"Multiplying {a} x {b}!")
 product = a * b
 print(product)

The body:

 print(f"Multiplying {a} x {b}!")
 product = a * b
 print(product)

Dissecting a Function

multiple statements

all indented one level relative to signature

uses a and b as variables without declaring!

can end with a return statement to produce a value (this example doesn't)

11

Choose a better name for each of the four functions below. Each

function is run with a single list as its input, e.g. M1([3, 9, 0, 14])

def M1(lst):
 smallest = lst[0]
 for elem in lst:
 if elem < smallest:
 smallest = elem
 print(smallest)

def M2(lst):
 running_sum = 0
 for elem in lst:
 running_sum += 1
 print(running_sum)

def M3(lst):
 saved = lst[0]
 for elem in lst:
 if elem > saved:
 saved = elem
 print(saved)

def M4(lst):
 running_sum = 0
 for elem in lst:
 running_sum += elem
 print(running_sum)

A: max , B: min , C: sum , D: len

Activity: Choosing Function Names

12

Here is a function that takes a message and a number

and prints that message that number of times.

def print_n_times(msg, n):
 counter = 0
 while counter < n:
 print(msg)
 counter = counter + 1

What happens when we call the function: print_n_times("Hi!", 3)?

Recap: Calling Functions with Inputs

13

calling print_n_times("Hi!", 3)
def print_n_times(msg, n):
 # msg = "Hi!"
 # n = 3
 counter = 0
 while counter < n: # while counter < 3:
 print(msg) # print("Hi!")
 counter = counter + 1

Recap: Calling Functions with Inputs
The function's parameters are msg and n .

The function call provides two arguments: "Hi!" and 3

These are names for variables that can be used in the body of the function

These are the values that the parameter variables

will take at the start of the function execution.

14

def add_three_numbers(a, b, c):
 first_two = a + b
 last = c + first_two
 print(last)

A: True, B: False

Activity: Counting Numbers

M5: calling the function as add_three_numbers(3,
4, 7, 9) leads the program to immediately crash

M6: calling the function as add_three_numbers("three",
"four", "five") leads the program to immediately crash

15

Assuming you have a list lst containing a bunch of numbers, write a

couple of loops that print out all of the negative numbers and then all of

the non-negative numbers. (C14, but leave just a little space at the top)

e.g.

lst = [9, -19, 31, -13, 1, 2]
TODO: Your loop(s) here

-19 -13 9 31 1 2

You're not writing a whole function yet! Just write
some lines & loops like you've been doing before.

Activity: Working Towards Writing a Function

16

Write the signature for a function that prints out all of the negative

numbers and then all of the non-negative numbers. (L15)

Remember: a signature consists of a def , a function name,
and a list of parameters the function should be called with.

Activity: Working Towards Writing a Function

17

Add a signature to the code you wrote for (C14) in

order to turn it into a function that can be called.

Then, in (C16), write an example of a function call that would print out the following output:

-30 -14 3 19 8

Activity: Working Towards Writing a Function

18

Function calls are themselves expressions, meaning that they always have a value.

return is keyword that serves two purposes:

New: return

The value of a function call is determined by the value that function returns

stops function execution in its tracks

provides a value for the expression of the function call

19

def multiply_two_numbers(a, b):
 print(f"Multiplying {a} x {b}!")
 product = a * b
 return product

If we write the call multiply_two_numbers(3, 7) , then...

 # a = 3
 # b = 7
 print(f"Multiplying {a} x {b}!")
 product = a * b # product = 3 * 7
 return product # return 21

...we return the value of product , which is 21 based on

this function call. The following therefore evaluates to True :

multiply_two_numbers(3, 7) == 21

return : An Example

20

An output that's printed is not the same as an output that's returned.

Printing vs. Returning

Any call to print() will make text appear on the screen, but it doesn't produce a value

If a function is supposed to calculate and create some value (e.g. the

product of two numbers), it must return that value in the function body.

21

def our_min(lst):
 smallest = lst[0]
 for elem in lst:
 if elem < smallest:
 smallest = elem
 print(smallest)

def our_len(lst):
 running_sum = 0
 for elem in lst:
 running_sum += 1
 print(running_sum)

some_numbers = [1000, 3, 8]

result = our_min(some_numbers) # 3
print(result) # None

result = our_len(some_numbers) # 3
print(result) # None

These functions both compute some value and then print it but do not return it.

Functions that Have No return

22

def our_min(lst):
 smallest = lst[0]
 for elem in lst:
 if elem < smallest:
 smallest = elem
 return smallest)

def our_len(lst):
 running_sum = 0
 for elem in lst:
 running_sum += 1
 return running_sum)

some_numbers = [1000, 3, 8]

result = our_min(some_numbers) # Nothing!
print(result) # 3

result = our_len(some_numbers) # Nothing!
print(result) # 3

These functions now compute some value and then return it but do not print it.

Adding return

23

return works as a stopping/exit point for your program. If you

execute a line with return , you will leave that function call execution.

def print_all_above(lst, k):
 for elem in lst:
 if elem > k:
 print(elem)

print_all_above([5, 10, 15], 8)

10 15

The Point of No return ?

24

return works as a stopping/exit point for your program. If you

execute a line with return , you will leave that function call execution.

def print_first_above(lst, k):
 for elem in lst:
 if elem > k:
 print(elem)
 return

print_all_above([5, 10, 15], 8)

10

The Point of No return ?

25

return works as a stopping/exit point for your program. If you

execute a line with return , you will leave that function call execution.

def return_first_above(lst, k):
 for elem in lst:
 if elem > k:
 return elem

print_all_above([5, 10, 15], 8)

...but it does return 10 !

The Point of No return ?

26

	List Comprehensions & Introduction to Functions
	List Comprehension Syntax
	List Comprehension Syntax
	Recall: Getting Non-Zero Exam Scores
	List Comprehension Practice (L11)
	List Comprehension Practice (L13)

	Functions
	Demystifying Functions
	Functions as Named Groups of Statements
	Activity: Calling Short Functions
	Anatomy of a Function
	Dissecting a Function
	Dissecting a Function
	Activity: Choosing Function Names
	Recap: Calling Functions with Inputs
	Recap: Calling Functions with Inputs
	Activity: Counting Numbers
	Activity: Working Towards Writing a Function
	Activity: Working Towards Writing a Function
	Activity: Working Towards Writing a Function
	New: return
	return: An Example
	Printing vs. Returning
	Functions that Have No return
	Adding return
	The Point of No return?
	The Point of No return?
	The Point of No return?

