Functions

Harry Smith

Learning Objectives

e Be able to read a function's signature to identify its name and its input types
e Be able to follow program execution through multiple function calls

e Be able to write your own functions to perform specific tasks

Introduction to Functions

e Functions are named lists of statements

e Functions must be defined in order to be used. A function definition specifies...
o the name of the function

o the arguments that the function takes as input
o the set of statements that represent what happens when the function is used

e Once defined, a function can be called (executed/run)

Many new definitions here,
but about things we already know!

(Re)-Introduction to Functions

We already know about a number of functions and we have some insight into how to use them!
e print()

e len()

e Tange()

e dozens of PennDraw functions

e plenty more (sum(), max (), min(), 1nput(),..)

(Re)-Introduction to Functions

Typical Usage Name Inputs Returns Description
len("lemonworld") len a sequence int Finds the length of a sequence.
pd.circle(0.5, . float, _

circle None Draws a circle.

0.5, 0.1) float, float

[int], a Defines a range with the specified
range (10, 100, 4) range .

int, [int] range start, stop, and step values.

. _ _ Display a representation
print("Hello!") print anything at all None |
of the input(s) as text.

Demystifying Functions

What's happening here?

import penndraw as pd
pd.rectangle(0.5, 0.5, 0.1, 0.2)
pd.run()

Recall:

e functions are named groups of statements

e those statements are executed when we call a function by name

Demystifying (??) Functions

def rectangle(x, y, half_width, half_height, filled):

w_scaled = _factor x(half width)

h_scaled = _factor_y(half_height)
X_scaled = scale x(x) - w_scaled
y_scaled = scale_y(y) - h_scaled

if not filled:
_r = UnfilledRectangle(x_scaled, y_scaled, 2 %
w_scaled, 2 * h_scaled, color=color, batch=BATCH)
paired [[a + X _scaled, b + y scaled] for a, b in zip(
._get_ vertlces()[2], _get_vertices()[1::2])]
add a repeat of the second vertex to avoid the weird line cap issue
paired.append(paired[1])
return pg.shapes.MultilLine(*paired, thickness=_scaled_pen_radius(),
closed=True, color=color, batch=BATCH)
else:
return pg.shapes.Rectangle(x_scaled, y_scaled, 2 * w_scaled, 2 * h_scaled, color=color, batch=BATCH)

Anatomy of a Function

Anatomy of a Function

e Function definitions consist of the function's signature
as well as a block of statements called its body
o A function signature consists of:
= the function's name

» the list of parameters that it takes as input.

Dissecting a Function

def multiply two_numbers(a, b):
print(£"Multiplying iat x ibi!")
product = a * b
return product

The signature:

def multiply two _numbers(a, b):

e def

e the function's name (multiply two_numbers)

e a pair of parentheses

e a comma-separated list of parameters (a and b)

Dissecting a Function

def multiply two _numbers(a, b):
print(£"Multiplying iat x ibi!")
product = a * b
return product

The body:

print(f"Multiplying $af x 31b$!")
product = a * b
return product

e multiple statements
e all indented one level relative to signature
e uses a and b as variables without declaring!

e ends with a return statement (more on this soon...)

Function Sighatures

Function Signatures

def <name>(argd, argl, ...):

e det

e function name:

o chosen to be descriptive of what the function does

o snake_case as always

e pair of parentheses

e comma-separated list of positional parameter names

o These are the "options” that we specify when calling.

o Values provided at call available in
the parameter names specified in t

pody using

ne signature.

10

Function Signatures: Examples

def multiply two _numbers(a, b):
def circle(x_center, y_center, radius):

def say hello():

11

Function Signatures Set the Rules for Calling

If this is my signature...

def multiply two_numbers(a, b):

Call Allowed?
multiply two_numbers(4, 5) v
multiply_two_numbers(4.0, 5) v

multiply two_numbers(5)

multiply two_numbers(5, 6, 7)

multiply_two_numbers("yes", "no") ?277?

Function Signatures Set the Rules for Calling

If this is my signature...

def multiply two_numbers(a, b):

o711 Allowed?
multiply two_numbers(4, 5) v
multiply _two_numbers(4.0, 5) v

multiply two_numbers(5)

multiply two_numbers(5, 6, 7)

multiply two_numbers("yes", "no") ™ (but probably will lead to an error down the line...)

Function Signatures Set the Rules for Calling

If this is my signature...

def say hello():

Call Allowed?

say_hello() v

literally everything else

Signatures & Calling

It a function signature lists two positional parameters,
it must be called with two positional parameters.

e no restriction on how many parameters a function may require (0 to very many)

e No guarantee about the types of the parameters that the function is expecting
o the joys of Python @

15

Simple Function Calls

A Worked Example

Here is a function that takes a message and a number
and prints that message that number of times.

def print n_times(msg, n):
counter = 0
while counter < n:
print(msg)
counter = counter + 1

\What happens when we call the function: print n_times("Hi!", 3)?

16

A Worked Example

e The function's parametersare msg and n.
o These are names for variables that can be used in the body of the function

e The function call provides two arguments: "Hi! " and 3
o These are the values that the parameter variables
will take at the start of the function execution.

calling print_n_times("Hi!", 3)
def print_n_times(msg, n):
msg = "Hi!"
n = 3
counter = 0
while counter < n: # while counter < 3:
print(msg) # print("Hi!")
counter = counter + 1

17

Function Calls & Arguments

\When a function is called, the values of the arguments provided with the

call are associated in orderwith the parameters in the function definition

e this gives the parameter variables their initial values in the function body

e allows each individual call to change the behavior of your output

o print_n_times("H1!", 3) prints "Hi!" threetimes

o print_n_times("Bye!", 2) prints "Bye!" two times

18

return

Function calls are themselves expressions, meaning that they always have a value.
e The value of a function call is determined by the value that function returns

retuzrn is keyword that serves two purposes:

e stops function execution in its tracks

o provides a value for the expression of the function call

19

retuxrn: An Example

def multiply two_numbers(a, b):
print (£f"Multiplying iaf x 1b¢!")
product = a * b
return product

If we write the callmultiply two _numbers(3, 7),then..

a 3
b 4

print (£"Multiplying fa} x $b#!")

product = a * b # product = 3 * 7
return product # return 21

..we return the value of product, whichis 21 based on

this function call. The following therefore evaluates to True:

multiply two numbers(3, 7) == 21

Printing vs. Returning

An output that's printedis not the same as an output that's returned.

e Anycallto print () will make text appear on the screen, but it doesn't produce a value

e If afunctionis supposed to calculate and create some value (e.g. the
product of two numbers), it must returnthat value in the function bodly.

21

	
	Learning Objectives

	
	Introduction to Functions
	(Re)-Introduction to Functions
	(Re)-Introduction to Functions
	Demystifying Functions
	Demystifying (??) Functions

	
	Anatomy of a Function
	Dissecting a Function
	Dissecting a Function

	
	Function Signatures
	Function Signatures: Examples
	Function Signatures Set the Rules for Calling
	Function Signatures Set the Rules for Calling
	Function Signatures Set the Rules for Calling
	Signatures & Calling

	
	A Worked Example
	A Worked Example
	Function Calls & Arguments

	
	return
	return: An Example
	Printing vs. Returning

