

Learning Objectives
Be able to read a function's signature to identify its name and its input types

Be able to follow program execution through multiple function calls

Be able to write your own functions to perform specific tasks

1

Many new definitions here,
but about things we already know!

Introduction to Functions
Functions are named lists of statements

Functions must be defined in order to be used. A function definition specifies...

Once defined, a function can be called (executed/run)

the name of the function

the arguments that the function takes as input

the set of statements that represent what happens when the function is used

2

We already know about a number of functions and we have some insight into how to use them!

(Re)-Introduction to Functions

print()

len()

range()

dozens of PennDraw functions

plenty more (sum() , max() , min() , input() , ...)

3

Typical Usage Name Inputs Returns Description

len("lemonworld") len a sequence int Finds the length of a sequence.

pd.circle(0.5,

0.5, 0.1)
circle

float ,

float , float
None Draws a circle.

range(10, 100, 4) range
[int] ,

int , [int]

a

range

Defines a range with the specified

start, stop, and step values.

print("Hello!") print anything at all None
Display a representation

of the input(s) as text.

(Re)-Introduction to Functions

4

What's happening here?

import penndraw as pd
pd.rectangle(0.5, 0.5, 0.1, 0.2)
pd.run()

Recall:

Demystifying Functions

functions are named groups of statements

those statements are executed when we call a function by name

5

def rectangle(x, y, half_width, half_height, filled):
 w_scaled = _factor_x(half_width)
 h_scaled = _factor_y(half_height)
 x_scaled = _scale_x(x) - w_scaled
 y_scaled = _scale_y(y) - h_scaled

 if not filled:
 _r = UnfilledRectangle(x_scaled, y_scaled, 2 *
 w_scaled, 2 * h_scaled, color=color, batch=BATCH)
 paired = [[a + x_scaled, b + y_scaled] for a, b in zip(
 _r._get_vertices()[::2], _r._get_vertices()[1::2])]
 # add a repeat of the second vertex to avoid the weird line cap issue
 paired.append(paired[1])
 return pg.shapes.MultiLine(*paired, thickness=_scaled_pen_radius(),
 closed=True, color=color, batch=BATCH)
 else:
 return pg.shapes.Rectangle(x_scaled, y_scaled, 2 * w_scaled, 2 * h_scaled, color=color, batch=BATCH)

Demystifying (??) Functions

6

Anatomy of a Function
Function definitions consist of the function's signature

as well as a block of statements called its body

A function signature consists of:

the function's name

the list of parameters that it takes as input.

7

def multiply_two_numbers(a, b):
 print(f"Multiplying {a} x {b}!")
 product = a * b
 return product

The signature:

def multiply_two_numbers(a, b):

Dissecting a Function

def

the function's name (multiply_two_numbers)

a pair of parentheses

a comma-separated list of parameters (a and b)

8

def multiply_two_numbers(a, b):
 print(f"Multiplying {a} x {b}!")
 product = a * b
 return product

The body:

 print(f"Multiplying {a} x {b}!")
 product = a * b
 return product

Dissecting a Function

multiple statements

all indented one level relative to signature

uses a and b as variables without declaring!

ends with a return statement (more on this soon...)

9

def <name>(arg0, arg1, ...):

Function Signatures

def

function name:

pair of parentheses

comma-separated list of positional parameter names

chosen to be descriptive of what the function does

snake_case as always

These are the "options" that we specify when calling.

Values provided at call available in body using

the parameter names specified in the signature.

10

def multiply_two_numbers(a, b):
 ...

def circle(x_center, y_center, radius):
 ...

def say_hello():
 ...

Function Signatures: Examples

11

If this is my signature...

def multiply_two_numbers(a, b):
 ...

Call Allowed?

multiply_two_numbers(4, 5)

multiply_two_numbers(4.0, 5)

multiply_two_numbers(5)

multiply_two_numbers(5, 6, 7)

multiply_two_numbers("yes", "no") ???

Function Signatures Set the Rules for Calling

12

If this is my signature...

def multiply_two_numbers(a, b):
 ...

Call Allowed?

multiply_two_numbers(4, 5)

multiply_two_numbers(4.0, 5)

multiply_two_numbers(5)

multiply_two_numbers(5, 6, 7)

multiply_two_numbers("yes", "no") (but probably will lead to an error down the line...)

Function Signatures Set the Rules for Calling

13

If this is my signature...

def say_hello():
 ...

Call Allowed?

say_hello()

literally everything else

Function Signatures Set the Rules for Calling

14

If a function signature lists two positional parameters,

it must be called with two positional parameters.

Signatures & Calling

no restriction on how many parameters a function may require (0 to very many)

no guarantee about the types of the parameters that the function is expecting

the joys of Python

15

Here is a function that takes a message and a number

and prints that message that number of times.

def print_n_times(msg, n):
 counter = 0
 while counter < n:
 print(msg)
 counter = counter + 1

What happens when we call the function: print_n_times("Hi!", 3)?

A Worked Example

16

calling print_n_times("Hi!", 3)
def print_n_times(msg, n):
 # msg = "Hi!"
 # n = 3
 counter = 0
 while counter < n: # while counter < 3:
 print(msg) # print("Hi!")
 counter = counter + 1

A Worked Example
The function's parameters are msg and n .

The function call provides two arguments: "Hi!" and 3

These are names for variables that can be used in the body of the function

These are the values that the parameter variables

will take at the start of the function execution.

17

When a function is called, the values of the arguments provided with the

call are associated in order with the parameters in the function definition

Function Calls & Arguments

this gives the parameter variables their initial values in the function body

allows each individual call to change the behavior of your output

print_n_times("Hi!", 3) prints "Hi!" three times

print_n_times("Bye!", 2) prints "Bye!" two times

18

Function calls are themselves expressions, meaning that they always have a value.

return is keyword that serves two purposes:

return

The value of a function call is determined by the value that function returns

stops function execution in its tracks

provides a value for the expression of the function call

19

def multiply_two_numbers(a, b):
 print(f"Multiplying {a} x {b}!")
 product = a * b
 return product

If we write the call multiply_two_numbers(3, 7) , then...

 # a = 3
 # b = 7
 print(f"Multiplying {a} x {b}!")
 product = a * b # product = 3 * 7
 return product # return 21

...we return the value of product , which is 21 based on

this function call. The following therefore evaluates to True :

multiply_two_numbers(3, 7) == 21

return : An Example

20

An output that's printed is not the same as an output that's returned.

Printing vs. Returning

Any call to print() will make text appear on the screen, but it doesn't produce a value

If a function is supposed to calculate and create some value (e.g. the

product of two numbers), it must return that value in the function body.

21

	
	Learning Objectives

	
	Introduction to Functions
	(Re)-Introduction to Functions
	(Re)-Introduction to Functions
	Demystifying Functions
	Demystifying (??) Functions

	
	Anatomy of a Function
	Dissecting a Function
	Dissecting a Function

	
	Function Signatures
	Function Signatures: Examples
	Function Signatures Set the Rules for Calling
	Function Signatures Set the Rules for Calling
	Function Signatures Set the Rules for Calling
	Signatures & Calling

	
	A Worked Example
	A Worked Example
	Function Calls & Arguments

	
	return
	return: An Example
	Printing vs. Returning

