
CIS 1100
Functional

Programming in Python

Python

Fall 2024

University of Pennsylvania

Learning Objectives

Use functions as first-class values that can be passed around and manipulated in a program

Use higher-order functions that take other functions as inputs in order to develop

another approach to the common patterns of mapping, filtering, and aggregating.

Use lambdas to define short, "single-use" functions with an abbreviated syntax.

1

CIS 1100
Functions as Objects Python

Fall 2024

University of Pennsylvania

Function objects are defined using the function

syntax—exactly how we've defined them before.

def my_zip(a, b):
 """Create a list of pairs of elements from two sequences.

 Arguments:
 a -- The first sequence
 b -- The second sequence

 Returns:
 a list containing pairs of elements from the input sequences.
 """
 zipped = []
 smaller_len = min(len(a), len(b))
 for i in range(smaller_len):
 zipped.append((a[i], b[i]))
 return zipped

Functions are Objects

2

We've always used functions as things that can be defined and then called

>>> my_zip("haha", "lololol")
[('h', 'l'), ('a', 'o'), ('h', 'l'), ('a', 'o')]

But functions are just regular data.

>>> my_zip
<function my_zip at 0x1057101f0>

And regular data can be saved inside of other variables...

>>> f = my_zip
>>> f
<function my_zip at 0x1057101f0>
>>> f("123", "abc")
[('1', 'a'), ('2', 'b'), ('3', 'c')]

Function Names Are Identifiers

3

>>> f.__name__
'my_zip'
>>> f.__doc__
'Create a list of pairs of elements from two sequences.\n\n Arguments:\n...'
>>> f.__code__.co_argcount
2

Disclaimer: no need to memorize these!

Objects Have Attributes

4

analyses = [max, min, sum] # built-in functions
my_numbers = [0.96042771, 0.1607802, 0.006373713]

for analysis in analyses:
 print(f"{analysis.__name__} of my_numbers is {analysis(my_numbers)}")

max of my_numbers is 0.96042771
min of my_numbers is 0.006373713
sum of my_numbers is 1.127581623

Functions Can Be Saved in Lists

5

These features from the previous slides are not going to be vital

for you as beginner programs. Instead, they reveal a new way of

thinking about functions as data. We will now develop this further.

Towards Higher Order Functions

6

CIS 1100
Higher Order Functions Python

Fall 2024

University of Pennsylvania

Higher Order Functions are functions that take other functions as input.

This is possible since functions are just objects, and objects can be passed around in

programs.

Higher Order Functions

7

Previously, min() could be used to find the smallest value in some sequence:

>>> min([4, 15, 100, -20, 95])
-20

min() as Higher Order

8

What happens if we try to use min() on sequences of strings?

>>> names = ["Ivan", "Margaret", "Oly", "Sylvia"]
>>> min(names)
"Ivan"

By default, min() orders strings by comparing them alphabetically.

min() as Higher Order

9

What if we wanted the person with the shortest name?

>>> names = ["Ivan", "Margaret", "Oly", "Sylvia"]
>>> min(names, key=len)
"Oly"

We set the keyword argument key to take the value len , which compares

pairs of elements a and b by len(a) < len(b) instead of a < b

min() as Higher Order

The key for comparison is therefore the length

We have a function, len , that computes the length of a string

10

Many of our problems are just specific instances of common & general patterns

Higher Order Functions: Why?

Filtering: Removing all elements from a sequence that do not meet a particular condition

Mapping: Applying some transformation to all elements of a sequence

Aggregating: Performing some aggregate calculation based on the elements of a sequence

11

CIS 1100
Filtering Python

Fall 2024

University of Pennsylvania

new_list = [] # [] is a list with no contents
for variable in sequence: # For each value in the source sequence,
 if condition(variable): # if that value meets some condition
 new_list.append(<expression>) # add that value to the end of the new list.

We can rewrite the loop (above) into the comprehension (below)

new_list = [<expression> for variable in sequence if condition(variable)]

Filter Values Out of a Sequence

12

With a loop...

exam_scores = [100, 0, 89, 93, 78, 67, 0]
non_zeroes = [] # [] is a list with no contents
for score in exam_scores: # For each score from the list,
 if score > 0: # if that score is not zero,
 non_zeroes.append(score) # add that score to the end of the new list.

...or a comprehension:

exam_scores = [100, 0, 89, 93, 78, 67, 0]
non_zeroes = [score for score in exam_scores if score > 0]
print(non_zeroes)

[100, 89, 93, 78, 67]

Recall: Getting Non-Zero Exam Scores

13

filter is a higher order function that takes in a function and sequence and returns a new

sequence containing only those elements for which the provided function evaluates to True .

filter(f, seq) is equivalent to:

[elem for elem in seq if f(elem)]

filter

14

Rules about filter :

filter

the function being passed in must be one that can be called with a single argument.

the function being passed in must be one that produces a boolean value.

the value returned by filter is not actually a

list, but can be converted to one using list()

15

Define a function...

def is_positive(n):
 return n > 0

...and use it in filter() :

>>> result = filter(is_positive, [100, 0, 89, 93, 78, 67, 0])
>>> result
<filter object at 0x105711a90>
>>> l = list(result)
>>> l
[100, 89, 93, 78, 67]

Recall: Getting Non-Zero Exam Scores

16

names = ["haRry", "Adi", "molly", "jared", "cEDRIc", "Sukya", "TraviS"]
proper_caps = [] # [] is a list with no contents
for name in names: # For each name from the list,
 if name.istitle(): # if that name is in "title case"
 proper_caps.append(name) # add that name to the end of the new list.
print(proper_caps)

["Adi", "Sukya"]

Recall: Checking Capitalization

17

Could try filter(istitle, names) ...

>>> names = ["haRry", "Adi", "molly", "jared", "cEDRIc", "Sukya", "TraviS"]
>>> result = filter(istitle, names)
NameError: name 'istitle' is not defined

istitle() is actually a method belonging to the str class. It's not a free-floating function.

Recall: Checking Capitalization

18

Could try filter(str.istitle, names) instead

>>> names = ["haRry", "Adi", "molly", "jared", "cEDRIc", "Sukya", "TraviS"]
>>> result = filter(str.istitle, names)
>>> list(result)
['Adi', 'Sukya']

Recall: Checking Capitalization

19

CIS 1100
Mapping Python

Fall 2024

University of Pennsylvania

Curving exam scores using comprehensions...

exam_scores = [92, 99, 100, 98.5]
curved_scores = [score + 10 for score in exam_scores]

...or just loops:

curved_scores = []
exam_scores = [92, 99, 100, 98.5]
for score in exam_scores:
 curved_scores.append(score + 10)

Transforming Values in a Sequence

20

map is a higher order function that takes in a function and sequence and returns a new

sequence containing elements of the input sequence after having f applied to them.

map(f, seq) is equivalent to:

[f(elem) for elem in seq]

map

21

Rules about map :

map

the function being passed in must be one that can be called with a single argument.

the function being passed in must can return a value of any type.

the value returned by map is not actually a list, but can be converted to one using list()

22

Define a function...

def add_ten(n):
 return n + 10

...and use it in map() :

>>> result = map(add_ten, [100, 0, 89, 93, 78, 67, 0])
>>> result
<map object at 0x105711a90>
>>> l = list(result)
>>> l
[110, 10, 99, 103, 88, 77, 10]

Recall: Curving Exam Scores

23

We could transform a list of strings into a list of their lengths using len :

>>> names = ["hss", "tQm", "aditya", "Sukya"]
>>> lengths = list(map(len, names))
>>> lengths
[3, 3, 6, 5]

Mapping Using Built-Ins

24

We could transform a list of strings into a list of lowercase strings using str.lower :

>>> names = ["hss", "tQm", "aditya", "Sukya"]
>>> lowercase = list(map(str.lower, names))
>>> lowercase
['hss', 'tqm', 'aditya', 'sukya']

Mapping Using Built-Ins

25

CIS 1100
Aggregating Python

Fall 2024

University of Pennsylvania

Aggregation is done using a slightly trickier HOF called reduce imported from functools .

reduce is a function that takes in an accumulator function and a sequence and

repeatedly accumulates elements from the sequence using the accumulator function.

reduce(f, seq) is roughly equivalent to:

result = seq[0]
for elem in seq[1:]:
 result = f(result, elem)

reduce

26

If we define:

def add_two_numbers(a, b):
 return a + b

Then reduce(add_two_numbers, [3, 4, 5, 6]) evaluates to:

(((3 + 4) + 5) + 6)

sum as reduce

27

Rules about reduce :

reduce

the function being passed in must be one that can be called with two arguments.

the function can return a value of any type

the value returned can be of any type, depends on the input function

if the iterable is empty, then the reduce will cause an error

unless an optional third initializer argument is passed in.

the first argument represents the accumulator value

the second argument represents the next element from the sequence

28

reduce can take an optional third argument

specifying which value to start the accumulator at:

reduce(f, seq, init) is roughly equivalent to:

result = init
for elem in seq:
 result = f(result, elem)

Initializer in reduce

29

def increment_if_even(acc, elem):
 if elem % 2 == 0:
 return acc + 1
 else:
 return acc

>>> nums = [13, 45, 18, 10, 20, 31]
>>> reduce(increment_if_even, nums, 0)
3

Counting Even Values Using reduce

30

CIS 1100
Lambdas Python

Fall 2024

University of Pennsylvania

So far, functions are defined with:

But we know that we can assign arbitrary identifiers to functions by

saving them in variables. Maybe the name thing isn't that important?

Function Definitions

names,

input variables,

and bodies

31

Lambdas (or anonymous functions) are functions that are defined without names.

lambda <parameter_list> : expression

would become

def no_name(<parameter_list>):
 return expression

Lambdas

32

A lot of higher order functions take simple functions as inputs.

def add_two_numbers(a, b):
 return a + b
reduce(add_two_numbers, l, 0)

could be replaced with:

reduce(lambda a, b : a + b, l, 0)

Advantages of Lambdas

33

A lot of higher order functions take simple functions as inputs.

def is_positive(c):
 return c > 0
filter(is_positive, l)

could be replaced with:

filter(lambda c : c > 0, l)

Advantages of Lambdas

34

Disadvantages of Lambdas

Reduce readability

Can only express simple one-liners

Can't be "saved" for later without saving in a variable

this is bad style to do

just make a def statement instead

35

Previously, max() could be used to find the largest value in some sequence:

>>> max([4, 15, 100, -20, 95])
100

max() as Higher Order

36

What happens if we try to use max() on sequences of tuples?

>>> records = [("Ivan", 394), ("Peter", 832), ("Naomi", 398), ("Sylvia", 213)]
>>> max(records)
("Sylvia", 213)

By default, max() orders tuples by comparing their first values, and

so ("Sylvia", 213) is greatest based on alphabetical ordering.

max() as Higher Order

37

What if we wanted the person with the highest score?

>>> records = [("Ivan", 394), ("Peter", 832), ("Naomi", 398), ("Sylvia", 213)]
>>> max(records, key=lambda t: t[1])
("Peter", 832)

We can provide an anonymous function lambda t: t[1]
to tell max() to compare our based on their second elements.

max() as Higher Order

38

	Functional Programming in Python
	Learning Objectives

	Functions as Objects
	Functions are Objects
	Function Names Are Identifiers
	Objects Have Attributes
	Functions Can Be Saved in Lists
	Towards Higher Order Functions

	Higher Order Functions
	Higher Order Functions
	min() as Higher Order
	min() as Higher Order
	min() as Higher Order
	Higher Order Functions: Why?

	Filtering
	Filter Values Out of a Sequence
	Recall: Getting Non-Zero Exam Scores
	filter
	filter
	Recall: Getting Non-Zero Exam Scores
	Recall: Checking Capitalization
	Recall: Checking Capitalization
	Recall: Checking Capitalization

	Mapping
	Transforming Values in a Sequence
	map
	map
	Recall: Curving Exam Scores
	Mapping Using Built-Ins
	Mapping Using Built-Ins

	Aggregating
	reduce
	sum as reduce
	reduce
	Initializer in reduce
	Counting Even Values Using reduce

	Lambdas
	Function Definitions
	Lambdas
	Advantages of Lambdas
	Advantages of Lambdas
	Disadvantages of Lambdas
	max() as Higher Order
	max() as Higher Order
	max() as Higher Order

