
CIS 1100
Announcements Python

Fall 2024

University of Pennsylvania

1

This lecture contains less "testable material" than normal. What you might need for an exam:

CIS 1100 TA Application went live on Friday

Announcements

Being able to read type annotations in signatures

Being able to quickly glean the purpose & usage of a

given function or library given friendly documentation

Due Friday, Nov 22 at 11:59

Includes both a common and a supplemental application, so make sure to fill out both

TA Application Panel to ask about the TA experience tonight!

from 7-8:30pm in Wu & Chen Auditorium (Levine 101)

2

CIS 1100
Basics of Typing Python

Fall 2024

University of Pennsylvania

3

Mark "A" if this snippet runs without error; mark "B" if this snippet leads to an error.

(M1)

"hello" + 4

(M2)

"hello" + "4"

(M3)

["never", "let" , "it", "be"] + "said"

(M4)

["never", "let" , "it", "be"] + ["said"]

(M5)

x = 4
x = "4"

4

Python expressions always produce values that belong to a certain type. There are

several design considerations about Python that make it interesting to work with.

Types in Python

Python is strongly typed: operations that are not defined for a datatype are not permitted.

"hello" + 4 # no good—leads to an error

Python is dynamically typed: variables can change their types while the program is running.

x = 4
x = "4" # not a problem!

5

Java is a strongly and statically typed language that is compiled.

Types in Java

Compiled: the code is translated from Java to a di�erent representation before it can be run

Strong:

System.out.println(4 + true); // program won't compile!

Static: variable types are determined when the program is

compiled and cannot change while the program is running.

int x = 4;
x = "four"; // leads to a compiler error!

6

Other languages (like Java) require you to manually identify

the types of variables & functions inside of the code.

Static Type Systems

Annoying:

Helpful:

You have to commit to the types you pick

Lots of extra stu� laying around in your code

The compiler checks for you before the program runs that

all of the values will take the shapes they're supposed to.

The stricter the compiler, the more likely your

program is to be bug free once you get it to run.

7

First, a function in Python:

def count_occurrences_in_sequence(seq, target):
 count = 0
 for elem in seq:
 if target == elem:
 count += 1
 return count

Static Typing in Java

8

The same function in Java:

public static int countOccurrencesInSequence(String[] seq, String target) {
 int count = 0;
 for (String elem : seq) {
 if (target.equals(elem)) {
 count += 1;
 }
 }
 return count;
}

Static Typing in Java

Local variables declared with a type

Function return type is noted

Each input argument is given a type

9

Joys:

"Joys":

The Joys and "Joys" of Python

Python is fast to write

Python is FUN to write

Python can be quick and dirty—and that's valid!

Python can be arcane and hard to read

Python functions need to defend against inputs of unpredictable types

Python can be quick and dirty—and that's stressful!

10

From PEP 484:

It should also be emphasized that Python will remain a dynamically typed language,

and the authors have no desire to ever make type hints mandatory, even by convention.

But:

Goals

Can we make Python code do a better job of explaining itself without comments?

Can we decide to sometimes enforce some amount of static type checking?

11

CIS 1100
Variable Type Annotations Python

Fall 2024

University of Pennsylvania

12

Type Annotations for Code Legibility

Good variable & function names help a reader interpret the meaning of a snippet of code.

Adding a note for the type of a variable/function can help that become all the more clear.

13

For variables, : type annotates the variable with the type of the value it's supposed to store.

For functions, : type annotates the input types and -> ret_type annotates the intended

return type.

my_variable : type = <some_value>

def my_func(arg1 : type1, arg2 : type2) -> ret_type:
 ...

Type Annotations for Variables and Functions

14

Examples from mypy documentation.

x: int = 1
x: float = 1.0
x: bool = True
x: str = "test"

(These are somewhat obvious cases—"why bother when the type can be inferred from the

value?"—but at least they help signal a commitment to maintain that type for the variable)

Annotating Primitives

15

https://mypy.readthedocs.io/en/stable/cheat_sheet_py3.html

Examples from mypy documentation.

For collections, we specify that it's a collection of type
values by writing some form of collection[type]

x: list[int] = [1]
x: set[int] = {6, 7}

For a dict , which maps keys to values, we can identify the types of the keys and the values.

x: dict[str, float] = {"field": 2.0}

Annotating Sequences & Collections

16

https://mypy.readthedocs.io/en/stable/cheat_sheet_py3.html

Examples from mypy documentation.

Two common uses for tuples are

Annotating Tuples

fixed-length containers of mixed types

x: tuple[int, str, float] = (3, "yes", 7.5)

variable-length containers for a single type

x: tuple[int, ...] = (1, 2, 3)

17

https://mypy.readthedocs.io/en/stable/cheat_sheet_py3.html

Perhaps a variable stores an int unless it stores None , indicating

a missing value. We can use the | operator to indicate this:

excused_absences: int | None = query_student_absences(student_name)

Annotating Mixed Types

18

Perhaps a list stores a bunch of int values or None values, indicating

places where the value is missing. We can use the | operator to indicate this:

all_excused_absences: list[int | None] = [query_student_absences(name) for name in student_names]

Annotating Mixed Types

19

CIS 1100
Function Type Annotations Python

Fall 2024

University of Pennsylvania

20

For functions, : type annotates the input types and

-> ret_type annotates the intended return type.

def my_func(arg1 : type1, arg2 : type2) -> ret_type:
 ...

Works for keyword arguments, too:

def my_func(pos_arg1 : type1, kwarg1 : type2 = <default>) -> ret_type:
 ...

Function Type Annotations

21

For functions, : type annotates the input types and

-> ret_type annotates the intended return type.

def my_func(arg1 : type1, arg2 : type2) -> ret_type:
 ...

Works for keyword arguments, too:

def my_func(pos_arg1 : type1, kwarg1 : type2 = <default>) -> ret_type:
 ...

Function Type Annotations

22

(S7)

def greet(name: str) -> str:
 ...

(L11)

def calculate_total(item_prices: list[float], sales_tax: float = 0.08) -> float:
 ...

What are the input type(s) for this function?

What type would it return?

What are the input type(s) for this function?

What type should it return?

Based on the name and input types, can you make an

educated guess at what a function like this would do?

23

Based on the docstring for this function from Caesar,

can we add type annotations to the function signature?

def string_to_symbol_list(message):
 """
 Description: converts a string to a symbol list, where each element of the
 list is an integer encoding of the corresponding element of
 the string.
 Input: the message text (stored in a string) to be converted
 Output: the encoding of the message into a list of integers
 """
 ...

Example: Caesar Cipher

24

def string_to_symbol_list(message: str) -> list[int]:
 """
 Description: converts a string to a symbol list, where each element of the
 list is an integer encoding of the corresponding element of
 the string.
 Input: the message text to be converted
 Output: the encoding of the messagex
 """
 ...

Example: Caesar Cipher

25

(C12)

Rewrite this function signature to feature type annotations. Try to be as specific as

possible when annotating lists/sets/dicts, e.g. list[int] or dict[float, float] .

def ta_endorsements(restaurants, min_rating):
 """Given a dictionary mapping restaurant names to
 restaurant data, return a set of the names of all
 restaurants that exceed the given min_rating."""
 ...

26

Type annotations can save a little ambiguity when you're reading

a function signature and figuring out how to use or implement it.

Key Takeaways

They're just comments, basically, but they can save a little reading

They're entirely optional, but you should use them as much as you like

27

CIS 1100
Static Type Checkers Python

Fall 2024

University of Pennsylvania

28

This is commonly done in other languages with a compiler. This can tell you

when you made a mistake in your typing and prevent you from proceeding.

From Java:

Palindrome.java:13: error: bad operand types for binary operator '<='
 if (word <= 1) {
 ^
 first type: String
 second type: int

Compilers

29

Short answer: automatic type enforcement just not that commonly done!

Static Type Checkers in Python

Hard to get right in a language not designed for it

Just use a di�erent language, really. (Julia is super cool if you want Pythonish + static typing)

30

Longer answer: you can do it with MyPy.

We don't do this because:

Static Type Checkers in Python

it doesn't actually stop you from running the poorly-typed code

most libraries in Python aren't written with

annotations and so MyPy complains CONSTANTLY.

31

CIS 1100
Reading Documentation

Tips & Tricks

Python

Fall 2024

University of Pennsylvania

32

So people write a lot of documentation for their code, including:

Code is Hard to Read

docstrings/function header comments

inline comments

big long webpages explaining the use & purpose of their code

33

Unfortunately, a lot of documentation is also kind of hard to read.

34

Imagine you're taking on a part of a project where you have to implement some kind of spell

checker. Given a word that you think is misspelled, how would you suggest a replacement?

A Guided Walkthrough of Some

Examples, Featuring Some Tips for

Getting Through Documentation Hell

35

Just Google it!

(Disclaimer—don't do this while you're doing CIS 1100 homeworks, please!)

A Reasonable Start...

We're (mostly) trying to give you practice with the fundamentals of Python that you

need to be well-versed in if you want to be able to write code quickly and independently

Google & AI searches for simple stu� lead to full answers which deprives

you of the learning and also is plagiarism (and therefore Bad and Forbidden)

As we reach the end of the course, we're setting time

aside for some topics that will help you after you move on

36

You'd want to suggest a word that

looks similar to the typo, so you're

trying to find the word that's most

similar from a known set of words.

Anyways...

37

38

Note
![alt text](image-83.png)

>>> from Levenshtein import distance
ModuleNotFoundError: No module named 'Levenshtein'

OK, so not built in. We could fix with pip , but then we need to

go searching for more documentation. Leads to a case where...

Uhhh...

you want help with X

you find solution Y, which needs some tweaking

so you go to solution Z, which fixes Y and maybe makes absolutely no progress on X

39

40

The First Real Search Result

41

Not Exactly Right Either...?

42

But wait...

43

44

45

46

This is not technically a solution to our question, but it is a promising lead to a built-in.

A Good Lead

47

We can find the difflib module in the Python documentation.

But now we have to hope to understand this nonsense!

Steps for Success:

1. Start with the title and intro paragraph

2. Then, check the table of contents for something you think you might care about

3. If something seems promising, navigate to it from the T.O.C.

4. If nothing seems promising CTRL-F for important keywords

5. Don't be afraid to read, but don't default to reading straight through...

Understanding Python Module Documentation

48

https://docs.python.org/3/library/difflib.html

From the header:

This module provides classes and

functions for comparing sequences. It

can be used for example, for comparing

files, and can produce information about

file di�erences in various formats,

including HTML and context and unified

di�s.

Okayyy...

49

(S8) Which of these function/class

names seem most promising for picking

the best replacements for typo'd

words based on similar spellings?

Table of Contents

50

(or, "Good lord, that's a lot of text...")

So Close, Yet So Far...

51

Start with the signature:

difflib.get_close_matches(word, possibilities, n=3, cutoff=0.6)

1. Ignore the keyword arguments at the start because they're optional

2. Decide: Do the names of the positional arguments seem

helpful? Can you make an initial guess at their types?

Deep Breaths

52

Then, read just the first sentence:

This is going to be the text that:

This seems promising!!

Deep Breaths

explains the purpose most succinctly

describes the most important arguments

53

To verify, skip to the examples!!!

The text between the signature and the examples is a perfidious trick.

It is designed to keep you lost in a morass of petty details. For a goal-

oriented programmer like you, there's nothing in this zone but trite nonsense.

Deep Breaths

54

An example of a built-in that solves my EXACT problem?

That's Python, baby!!

What's That!?

55

(L13) Given a typo'd word l and a list of valid english words english , how

could I write a line of code to select the "best" possibility to replace the typo?

Now, With Confidence In Our Mission...

56

>>> l = ["this", "is", 100, "percent", "important"]
>>> print(" ".join(l))

(S9) What would appear on the last line as a result of running this code?

More Documentation Reading

57

If you need to solve a problem by installing a library

that's not built-in, you'll have to install something.

Working With New Packages

There are usually a number of options provided for how to do this

There is usually one good way to do this

58

59

60

61

Don't Fall Prey to These...

62

63

	Announcements
	Announcements

	Basics of Typing
	Types in Python
	Types in Java
	Static Type Systems
	Static Typing in Java
	Static Typing in Java
	The Joys and "Joys" of Python
	Goals

	Variable Type Annotations
	Type Annotations for Code Legibility
	Type Annotations for Variables and Functions
	Annotating Primitives
	Annotating Sequences & Collections
	Annotating Tuples
	Annotating Mixed Types
	Annotating Mixed Types

	Function Type Annotations
	Function Type Annotations
	Function Type Annotations
	Example: Caesar Cipher
	Example: Caesar Cipher
	Key Takeaways

	Static Type Checkers
	Compilers
	Static Type Checkers in Python
	Static Type Checkers in Python

	Reading Documentation Tips & Tricks
	Code is Hard to Read
	A Guided Walkthrough of Some Examples, Featuring Some Tips for Getting Through Documentation Hell
	A Reasonable Start...
	Anyways...
	Uhhh...
	The First Real Search Result
	Not Exactly Right Either...?
	But wait...
	A Good Lead
	Understanding Python Module Documentation
	Table of Contents
	So Close, Yet So Far...
	Deep Breaths
	Deep Breaths
	Deep Breaths
	What's That!?
	Now, With Confidence In Our Mission...
	More Documentation Reading
	Working With New Packages
	Don't Fall Prey to These...

