

Learning Objectives
Understand what is meant by a "data type"

List & use common operations including:

Recognize & debug common type errors

Converting between values of di�erent types & using input()

mathematical operations

relational operations

logical

1

Computers are devices that store, retrieve, and manipulate data at extreme speeds.

Data Types allow us to understand how computers organize & use this data.

Computers, Data, & Data Types

Data: pieces of information

Data Type: a category of information that defines a set of possible values that a

member can have and the set of operators that can be used to manipulate those values.

2

Data Type Purpose Sample Values Sample Operations

int whole (integer) numbers 3 , -14 , 0 + , - , * , /

float
numbers with

fractional parts
3.0 , -14.32 , 0.0 + , - , * , /

bool truth values True , False and , or , not

str text
"CIS 1100" ,

"False"
len() ,

indexing & slicing

None the absence of a value True , False and , or , not

Some Common Data Types

3

int is a data type that represents whole integer numeric values.

Numeric Types: int

These values can be positive, negative, or zero

No fractional (decimal) parts allowed

e.g. 3 , 1 , 0 , -10 , -1033 are all examples of int values.

Operations with int values are always precisely correct—no rounding error

4

float is a data type that represents numbers that contain a fractional (decimal) part.

>>> 0.1 + 0.1 + 0.1
0.30000000000000004

Numeric Types: float

These values can be positive, negative, or zero

Can have a fractional part

e.g. 3.0 , 1.4 , 0.0 , -10.0 , -1033.333

Operations with float values can have very small amounts of "precision" errors

5

int vs. float
TL;DR: mostly, they can be used interchangeably.

Much of the arithmetic you do in Python converts int
values to float values automatically. (More in a minute.)

int values are enumerable, which is nice for picking options out of a sequence.

6

For numeric types like int and float , the important operators are all mathematical.

Operator Operation Example with int values Output Value Output Type

+ Addition 3 + 5 8 int

- Subtraction 4 – 6 -2 int

* Multiplication 2 * 3 6 int

/ Division 3 / 2 1.5 float

Numeric Types: Operations

7

Notice how float is "contagious:" when a part of the

expression is a float , the output will be a float .

Operator Operation Example with int and float values Output Value Output Type

+ Addition 3.1 + 5 8.1 float

- Subtraction 4.0 – 0.86 3.14 float

* Multiplication -2.0 * 3 -6.0 float

/ Division 3.0 / 2.0 1.5 float

Numeric Types: Operations

8

Operator Operation Example with int values Output Value Output Type

// Integer Division 5 // 2 2 int

% Modulo (or "mod") 5 % 2 1 int

Integer Division & Modulo

9

Integer Division
Allows us to divide two int values and get an int as a result.

Do regular division arithmetic, and then truncate the result by removing the fractional part

Whereas 3 / 2 has a value of 1.5 , we know that 3 // 2 has a value of 1

Whereas 4 / 2 has a value of 2.0 , we know that 4 // 2 has a value of 2

10

Modulo
a % b calculates the remainder left after dividing a by b with integer division.

Example: 16 % 5 evaluates to 1—why?

5 "goes into" 16 three times (i.e. 16 // 5 evaluates to 3)

If we calculate 5 * 3 , we get 15 as a result.

The remainder between our answer and the right one is 16 - 15 , or 1 .

"If we divide 16 slices of pizza among 5 people, how many slices will be left over?"

11

Example Expression Example Result

0 % 3 0

1 % 3 1

2 % 3 2

3 % 3 0

4 % 3 1

5 % 3 2

Some Modulo Patterns

12

Example Expression Example Result

12 % 1 0

12 % 2 0

12 % 3 0

12 % 4 0

12 % 5 2

12 % 6 0

12 % 7 5

Some Modulo Patterns

13

Properties of Modulo
The output of a % b is always a number between 0 and b - 1 .

If a is evenly divisible by b , then a % b will always output 0 .

A general identity:

14

Booleans & bool
Programming isn't just numbers—also have notions of truth and logic.

Computers use boolean logic: a logic system with just two values.

The bool data type consists of just two values: True and False .

They're words, but they're not treated as text no quotes!

Make sure to spell them with capital letters.

15

Logical Operators
Logical systems give us ways of writing expressions that include variables.

We can create complex & interesting expressions using logical operators

Evaluating whether a expressions is True or

False depends on the values of the variables

These are conjunction, disjunction, & negation

Or, more commonly: and , or , & not .'

16

Expressions with and evaluate to True only when both operands are both True .

a b a and b

True True True

True False False

False True False

False False False

and

17

Expressions with or evaluate to True as long as one operand is True .

a b a or b

True True True

True False True

False True True

False False False

or

18

not flips the value of the expression it's applied to.

a not a

True False

False True

not

not is an example of a unary operator: works on a single expression.

19

raining = True
windy = False
not (raining and windy) or not raining and not windy

Finding the Truth of the Matter

Have to replace variables with their values to get an answer.

Parentheses evaluated first.

not comes before and comes before or .

20

raining = True
windy = False
not (raining and windy) or not raining and not windy
not (True and False) or not True and not False
not (False) or not True and not False
True or not True and not False
True or False and not False
True or False and True
True or False
True

Finding the Truth of the Matter

21

Strings
Used to represent text

str is the name of the type

Examples of str values:

Its values can be any sequence of valid characters (letters, digits, punctuation, or spacing)

Literals are denoted using pairs of quotation marks (can use " , ')

"Harry S. Smith"

"3330 Walnut Street"

"!@#$%^&*()0123456789"

22

It often makes sense to discuss the length of a

str value, or the number of characters it contains.

str Length str Length

"Harry" 5 " " 1

"HarrySmith" 10 " " 1

"Harry Smith" 11 "" 0

"1100?" 5 "!@#$" 4

Strings & Length

23

The expression len(s) evaluates to the int representing the number of characters in s .

long_word = "antidisestablishmentarianism"
length = len(long_word)
print(length)

28

Finding the Length of a String

24

The concatenation operation is the process of joining two strings together end-to-end.

>>> "CIS" + "1100"
"CIS1100"
>>> "Grace" + "Hopper"
"GraceHopper"
>>> "CIS" + 1100
TypeError: can only concatenate str (not "int") to str
>>> "1" + "1"
"11"

Combining Strings

The operator is + , but it's not addition!

Two str values are glued together with nothing added between them.

25

Less commonly useful, but still of note: the string duplication

operator (*) repeats a str value a number of times.

>>> "ha" * 1
"ha"
>>> "ha" * 2
"haha"
>>> "ha" * 4
"hahahaha"
>>> "ha" * 10
"hahahahahahahahahaha"

Repeating Strings

26

None is a type with only a single value: None

result = print("Hello, world!")
print(result)

None

None : The "Nothing to See Here" Type

Used to signify the absence of a value in many situations.

Sometimes we write expressions that don't have a meaningful value, so: None .

27

<= >= < > =
=

!=
 <

=
>

=
<

>
== != <= >= < > == != <= >= < >

 == != <= >= < >
Relational Operators

Group of operators that can be applied to values of di�erent data types

Provide us ways of comparing two values for order or equality.

The output data type is always a bool .

28

The == ("double equals") operator, allows us to ask if two values are equivalent to each other.

Expression Result

4 == 4 True

4.0 == 4 True

"4" == 4 False

Equality (==)

29

The != ("not equals") operator, allows us to ask if two values are di�erent from each other.

Expression Result

4 != 4 False

5 != 4 True

"Comp" != "Sci" True

Not Equality (!=)

30

Evaluate the relative ordering of two values, producing a bool .

Expression Result

4 > 5 False

9 <= 9 True

"carrot" > "banana" True

4 > "howdy" Error! Type mismatch.

Ordering (< , <= , > , >=)

The comparison operators must take in two values of the same

kind: both numeric (int or float), both str , or both bool

31

Convenient and succinct way of determining whether or not a value fits within a certain range.

Examples

0 < x <= 20

"zebra" > my_animal > "elephant"

 Chained Ordering

10 >= 0 > -10 is the same as 10 >= 0 and 0 > -10

32

Let's write code that determines whether or not a year counts as a Leap Year. From Wikipedia:

A leap year [...] is a calendar year that contains an additional day [...]

compared to a common year. The 366th day [...] is added to keep the

calendar year synchronised with the astronomical year or seasonal year.

Example: Leap Years

33

A year is a Leap Year if:

Example: Leap Years

The year number is divisible by four and the year number is not divisible by 100, or

The year number is divisible by 400

34

Our toolkit:

Example: Leap Years

Divisibility: a % b == 0 when a is divisible by b

Logical Operators: and & or can be used to combine multiple boolean expressions

35

A year is a Leap Year if:

A year is a Leap Year if:

Example: Leap Years

The year number is divisible by four and the year number is not divisible by 100, or

The year number is divisible by 400

The year % 4 == 0 and year 5 100 != 0 , or

The year % 400 == 0

36

A year is a Leap Year if:

Example: Leap Years

(year % 4 == 0 and year % 100 != 0) or (year % 400 == 0)

37

leap_year.py

year = 2024
is_leap_year = (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0)
print(f"Is {year} a leap year? {is_leap_year}")

Example: Refactoring Leap Year

38

	
	Learning Objectives

	
	Computers, Data, & Data Types
	Some Common Data Types

	
	Numeric Types: int
	Numeric Types: float
	int vs. float
	Numeric Types: Operations
	Numeric Types: Operations
	Integer Division & Modulo
	Integer Division
	Modulo
	Some Modulo Patterns
	Some Modulo Patterns

	Properties of Modulo

	
	Booleans & bool
	Logical Operators
	and
	or
	not
	Finding the Truth of the Matter
	Finding the Truth of the Matter

	
	Strings
	Strings & Length
	Finding the Length of a String
	Combining Strings
	Repeating Strings
	None: The "Nothing to See Here" Type

	
	Relational Operators
	Equality (==)
	Not Equality (!=)
	Ordering (<, <=, >, >=)
	⛓️ Chained Ordering ⛓️

	
	Example: Leap Years
	Example: Leap Years
	Example: Leap Years
	Example: Leap Years
	Example: Leap Years
	Example: Refactoring Leap Year

