

Learning Objectives
Create and evaluate boolean expressions that

answer questions about the state of a program's data

Use if , elif and else keywords to build conditional

statements that control the flow of a program

Choose among several enumerated possibilities using the match & case keywords

1

Like humans, programs should be able to make decisions based on conditions

Conditions & Conditionals

Conditions are the states of the data in your program

Conditional statements allow a program to decide to execute

some code if a condition is True and another part if it is False
e.g. the Pedestrian Program: "if the light is green, walk; else, stop"

first example of modifying control flow, or order of program execution

2

Boolean expressions evaluate to bool values, i.e. either True or False .

3 > 4 and 9 == (81 / 9) # always True
not True and True or False and not False # always False

We are also able to write boolean expressions that contain variables.

x % 3 == 2 and x > 5 # not always True or False!

This expression's value changes based on the value of x !

Can you think of a value of x that would cause the

expression to evaluate to True? What about False?

Conditions as Boolean Expressions

3

When we use variables as part of boolean expressions, we are able to

test conditions about the state of the world that our program represents.

Testing the State of the World

Compare values with relational operators

Combine boolean expressions with logical operators.

4

Relational Operators:

Operator/method Input Types Description

< / <= int , float , str less than / less than or equal to

> / >= int , float , str greater than / greater than or equal to

== / != int , float , str equal to / not equal to

The Boolean Expression Toolkit

5

Logical Operators:

Operator/method Input Types Description

and bool evaluates to True only if both inputs are True

or bool evaluates to True as long as at least one input is True

not bool negates a single bool value to its opposite

The Boolean Expression Toolkit

6

Conditions are most useful when they model real-world concepts:

Sometimes the answers will be "yes" and sometimes "no", all

depending on the values stored in the underlying variables.

Writing Expressions to Test Conditions

"Is the concert tonight sold out?"

"Is the user's suggested password valid?"

7

As usual, in programming, we want to be as specific as possible!

Original Rephrased

"Is the concert
tonight sold out?"

"Is the number of tickets sold equal
to the capacity for the venue?"

"Is the user's suggested
password valid?"

"Is the user's password long enough to be
valid and is it different from their username?"

Writing Expressions to Test Conditions

8

Being specific lets us write expressions in terms of variables & relational operators.

Rephrased Code

"Is the number of tickets sold equal

to the capacity for the venue?"

num_tickets ==
venue_capacity

"Is the user's password long enough to be
valid and is it different from their username?"

len(password) >= 8 and
password != username

Writing Expressions to Test Conditions

9

"if music be the food of love, play on." — William Shakespeare

The if statement allows us to specify a portions of our program

that should be run only in the case that a certain condition is met.

if my_boolean_expression:
statement_one
statement_two
...
statement_last

The if Statement

10

Control Flow & if
Test the condition...

if it is True , execute

the block of statements

otherwise, proceed to

the next statement.

11

num = input("Pick a number: ")
num = int(num)
print("Printing a message if {num} is divisible by 5...")
if num % 5 == 0:

print("Yes!")
print("All done.")

$ python pick_a_number.py
Pick a number: 20
Printing a message if 20 is divisible by 5...
Yes!
All done.

Using if

12

num = input("Pick a number: ")
num = int(num)
print("Printing a message if {num} is divisible by 5...")
if num % 5 == 0:

print("Yes!")
print("All done.")

$ python pick_a_number.py
Pick a number: 13
Printing a message if 13 is divisible by 5...
All done.

Using if

13

Multiple if statements in a program are evaluated independently and in order.

username = "inspector_norse"
password = "0451"
if len(password) < 8:

print("Bad Password: Not long enough!")
if password == username:

print("Bad Password: Same as username!")

Bad Password: Not long enough!

Multiple if Statements

14

if statements are statements, so they can be members of the bodies of other if statements!

if month <= 7:
if month % 2 == 1:

print(f"Month {month} has 31 days.")
if month % 2 == 0 and month != 2:

print(f"Month {month} has 30 days.")
if month == 2:

print(f"Month {month} has 28 days.")
if month > 7:

if month % 2 == 1:
print(f"Month {month} has 30 days.")

if month % 2 == 0:
print(f"Month {month} has 31 days.")

Nesting if Statements

15

elif allows you to specify an alternative condition that is

be tested only when all previous conditions were False .

The elif syntax:

if first_boolean_expression:
statement_one
statement_two
...
statement_last

elif alternative_boolean_expression:
statement_a
statement_b
...
statement_z

elif : Choosing One Of Several Options

16

if and elif statements

represent mutually exclusive

choices: we may execute the

body of one, the other, or

neither, but never both.

Control Flow
& elif

17

temperature = 90
if temperature > 85:

print("Go to the beach. ")
elif temperature > 55:

print("Go hiking. ")

Go to the beach.

Possible outcomes:

elif : Outdoor Activities

temperature > 85

85 >= temperature > 55

55 >= temperature nothing!

18

exam_score = 94
letter_grade = "F"
if exam_score > 90:

letter_grade = "A"
if exam_score > 80:

letter_grade = "B"
if exam_score > 70:

letter_grade = "C"
if exam_score > 60:

letter_grade = "D"
print(f"Your exam score of {exam_score} earns: {letter_grade}.")

Your exam score of 94 earns: D.

Assigning Letter Grades

19

exam_score = 94
letter_grade = "F"
if exam_score > 90:

letter_grade = "A"
elif exam_score > 80:

letter_grade = "B"
elif exam_score > 70:

letter_grade = "C"
elif exam_score > 60:

letter_grade = "D"
print(f"Your exam score of {exam_score} earns: {letter_grade}.")

Your exam score of 94 earns: A.

Assigning Letter Grades

20

transaction_completed = False
if account_balance < item_price:

print("Insufficient funds to complete transaction. Transaction cancelled.")
elif account_balance > item_price:

transaction_completed = True
print(f"Completing transaction; dispensing change amount of {account_balance - item_price}")

elif account_balance == item_price:
transaction_completed = True
print("Completing transaction. Have a nice day.")

if transaction_completed and item_price > 10.00:
print("Printing $2.50 coupon for your next visit.")

elif transaction_completed and item_price > 5.00:
print("Printing $1.00 coupon for your next visit.")

Multiple Conditional Chains

21

if temperature > 85:
print("Go to the beach. ")

elif temperature > 55:
print("Go hiking. ")

Possible outcomes:

What to do on a cold day?

Outdoor Activities (On A Cold Day)

temperature > 85

85 >= temperature > 55

55 >= temperature nothing!

22

The else keyword allows us to define a body of statements that will be

run no matter what in the case that all previous conditions were not met.

if first_boolean_expression:
 block_one
elif alternative_boolean_expression:
 block_two
optionally many elif statements provided here...
else:
 block_three

Look: no new condition provided!

else : Provide A Default Outcome

23

24

Being a part of conditional statements, elif and else statements can be

found nested within the bodies of other conditionals. The indentation of the block

indicates which conditional the elif and else statements correspond to.

if am_hungry:
 if is_morning:
 print("Making pancakes! ")
 else:
 print("Making soup! ")

if am_hungry:
 if is_morning:
 print("Making pancakes! ")
else:
 print("Making soup! ")

Nesting with else /elif

25

Recipe for any conditional:

1. Always start with an if . Each if comes with a boolean

expression to test. This expression is always tested.

2. As many elif statements as desired. Each comes with a boolean

expression. Each expression only tested if all previous are False .

3. An else statement, or not. No boolean expression provided.

Body executed if all previous expressions are False .

Putting it All Together

26

What to do at a traffic light:

if traffic_light == "red":
print("Stop!")

elif traffic_light == "yellow":
print("Slow down.")

elif traffic_light == "green":
print("Proceed carefully.")

Perfectly valid code, but a conditional requires studying to understand.

case /match : Another Way to Choose

27

What to do at a traffic light, take two:

match traffic_light:
 case "red":
 print("Stop!")
 case "yellow":
 print("Slow down.")
 case "green":
 print("Proceed carefully.")

case /match : Another Way to Choose

match allows us to compare an expression's value to several different cases.

Each case gives a value to compare to and a block of code to execute if there's a match.

28

match status:
 case 200:
 print("The request worked, here's the page you wanted.")
 case 301:
 print("What you were looking for has been moved, but here's the link to the new spot.")
 case 403 | 404:
 print("You asked for something you can't have.")
 case 500:
 print("Something went wrong. Sorry!")
 case _:
 print("Something complicated happened.")

Multiple Matches & Default Cases

Use | to provide multiple options per case

Use case _ at the end to specify a default behavior.

29

	
	Learning Objectives

	
	Conditions & Conditionals
	Conditions as Boolean Expressions
	Testing the State of the World
	The Boolean Expression Toolkit
	The Boolean Expression Toolkit
	Writing Expressions to Test Conditions
	Writing Expressions to Test Conditions
	Writing Expressions to Test Conditions

	
	The if Statement
	Control Flow & if
	Using if
	Using if
	Multiple if Statements
	Nesting if Statements

	
	elif: Choosing One Of Several Options
	Control Flow & elif
	elif: Outdoor Activities
	Assigning Letter Grades
	Assigning Letter Grades
	Multiple Conditional Chains

	
	Outdoor Activities (On A Cold Day)
	else: Provide A Default Outcome
	Nesting with else/elif
	Putting it All Together

	
	case/match: Another Way to Choose
	case/match: Another Way to Choose
	Multiple Matches & Default Cases

