
CIS1100.py — Fall 2024 — Exam 1

Full Name: _____________________________________________

PennID (e.g. 12345678): ____________________________________

My signature below certifies that I have complied with the University of
Pennsylvania’s Code of Academic Integrity in completing this examination.

______________________________ __________________________

Signature Date

Instructions are below. Not complying will lead to a 0% score on the exam.

● Do not open this exam until told by the proctor.

● You will have exactly 60 minutes to take this exam.

● Make sure your phone is turned OFF (not on vibrate!) before the exam starts.

● Food and gum are not permitted—don’t be noisy or messy.

● You may not use your phone or open your bag for any reason, including to retrieve or put
away pens or pencils, until you have left the exam room.

● This exam is closed-book, closed-notes, and closed computational devices.

● If you get stuck on a problem, it may be to your benefit to move on to another question
and come back later.

● All code must be written in proper Python format.

● Do not separate the exam pages. Do not take any exam pages with you. The entire exam
packet must be turned in as is.

● Only answers on the FRONT of pages will be graded. There are two blank pages at the
end of the exam if you need extra space for any graded answers.

● Use a pencil, or blue or black pen to complete the exam.

● If you have any questions, raise your hand and a proctor will come to you.

● When you turn in your exam, you may be required to show your PennCard. If you forgot to
bring your ID, talk to an exam proctor immediately.

● We wish you the best of luck!

Q1 Q2 Q3 Q4 Q5 Q6 (bonus)



Q1. Types Fill In The Blank

In the column marked “Type,” choose the type (int, float, bool, str, list, set, tuple, range) for the final
expression in the snippet, or write "error" if there is an error in the expression. You do not need to
write the value of the expression. In cases where multiple answers are possible, any of them will be

accepted.

Statement Type

3 in {1, 2, 3, 4}

13.4 / 18.43

[1, 2] + [3, 4]

"CIS 1100" - 0

"CIS 1100" + "0"

len(sys.argv)

l = [3, 4, 5, 6, 7, 10, 12]

l[0]

l = [3, 4, 6, 7, 10, 12]

l[0:2]

17 % 4



Q2. Values Fill In the Blank

Write the value that gets printed, or write "error" if there is an error during the execution of these
lines of the program. Hint: remember that None is a value.

Question 2.1

print(int("4") // 3)

Answer:

Question 2.2

x = [1, 2, 3]

x[len(x) - 2] = x[len(x) - x[1]] - x[1]

print(x[1])

Answer:

Question 2.3

s = {1, 2, 3}

print(s[0])

Answer:

Question 2.4

print(f"{10} + {20}")

Answer:

Question 2.5

nums = [1100, 1200, 1210, 1600]

result = nums.append(2620)

print(result)

Answer:



Q3. Debugging

Help fix this buggy implementation of mealswipe_predictor. This function should return the
number of days before the end of the semester that you will run out of meal swipes. Provide your

answers in the table on the next page—identify each of the five lines with errors and provide

corrections for those lines. (There are actually six errors, but the first error is solved for you.)

If the swipe history is empty or you always use 0 meal swipes per day, it should print an error

message and return None. If you have more swipes left than you need, the result will be negative,

indicating how many extra days you could survive on meal swipes after the semester ends.

"""

Input: num_days -> int, number of days in a full semester

num_swipes -> int, number of swipes in your mealplan

swipe_history -> list of ints, swipe_history[i] represents

the number of swipes used on day i, where the first

day of the semester is day 0

Examples:

mealswipe_predictor(365, 365, [1]) -> 0

mealswipe_predictor(365, 365, [365]) -> 364

mealswipe_predictor(365, 380, [1]) -> -15

mealswipe_predictor(30, 12, [1, 2, 3]) -> 24

mealswipe_predictor(30, 12, [0, 0, 0, 0, 0, 0]) -> None

mealswipe_predictor(30, 12, []) -> None

"""

1. define mealswipe_predictor(num_days, num_swipes, swipe_history):

2.

3. if len(swipe_history) == 0:

4. print("Not enough data to make a prediction.")

5. None

6.

7. days_so_far = swipe_history.len()

8. total_swipes_used = sum(swipe_history)

9. avg_uses_per_day = days_so_far // total_swipes_used

10.

11. if avg_uses_per_day != 0:

12. print("On average, you are not eating. Please reconsider.")

13. return None

14.

15. remaining_swipes = num_swipes - total_swipes_used

16. days_remaining = remaining_swipes // avg_uses_per_day

17.

18. return num_days + days_so_far - days_remaining



Q4 Complete the Program: calendar.py

The following program models a person's calendar of monthly recurring events. The program

maintains two lists: days and events. The lists always have the same lengths. For each index i, we
store in days[i] the day on which a particular event takes place. The name of that event is events[i].
The program should read a day (as a number from 1-31, inclusive) as the first command line argument

and then search through the days list, printing out all of the names of events that take place on the
input day. The program should also print out a warning about events that are scheduled to take place

on the following day. Keep in mind that the day following 31 would be 1! Finally, if the day provided as
a command line argument is not a number between 1 and 31 inclusive, print an error message. There

are some example executions below; the code to complete and the table for writing answers are on

the next page.

$ python calendar.py 15
TODAY: Bowling
TODAY: Movie Night
TOMORROW: Pay Bills

$ python calendar.py 31
TOMORROW: Pay Rent
TODAY: Deep Clean

$ python calendar.py 0
Invalid day!

Line Number Incorrect Code Replacement Code

1 define def



import ___BLANK_0___

days = [1, 5, 15, 15, 5, 16, 31]

events = ["Pay Rent", "Team Meeting", "Bowling", "Movie Night",

"Grocery Shopping", "Pay Bills", "Deep Clean"]

input_day = ___BLANK_1___ # read from the command line

if input_day < 1 ___BLANK_2___ input_day > 31: # check if input is invalid

print("Invalid day!")

else:

next_day = ___BLANK_3__ + 1 # find the next day, wrap around if needed

for idx, day in enumerate(days):

if ___BLANK_4___: # found an event for input day

print("TODAY: " + events[idx])

elif day == nextDay: # found an event for next day

print("TOMORROW: " + ___BLANK_5___)

Blank # Code

0

1

2

3

4

5



Q5. Coding: FarmBot

FarmBot is a little robot responsible for inspecting crops in a field. He
emits a string of moves that he took on his travels, called a history.

In a history, a "0" indicates one move north, a "1" indicates one move
east, a "2" indicates one move south, and a "3" indicates one move west.
For example, the history "01223300" would indicate the path on the right,
assuming that FarmBot starts at the location marked by🤖.

First, implement a function that converts a history into a summary, which is a list that counts the
total number of moves north, east, south, and west. The summary for the history above would
be [3, 1, 2, 2]. (A summary list always has length four.)

Question 5.1

"""

Input: a history of FarmBot’s moves

Output: a summary of the moves, as defined above

Examples: history_to_summary("") => [0, 0, 0, 0]

history_to_summary("0") => [1, 0, 0, 0]

history_to_summary("3333") => [0, 0, 0, 4]

history_to_summary("01223300") => [3, 1, 2, 2]

"""

def history_to_summary(history):



Second, implement a function that determines from a summary whether FarmBot is burnt out,
which means he moved more than five times in any direction. This is not based on FarmBot’s
final location but instead on the total number of times he moved in each direction.

Question 5.2

"""

Input: a summary of FarmBot’s moves

Output: whether FarmBot is burnt out, as defined above

Examples: is_burnt_out([1, 2, 3, 4]) => False

is_burnt_out([5, 5, 5, 5]) => False

is_burnt_out([3, 4, 5, 6]) => True

is_burnt_out([6, 0, 0, 6]) => True

"""

def is_burnt_out(summary):

Finally, implement a function (on the next page) that determines from a history whether FarmBot
needs to be picked up. He needs to be picked up if he ever took three or more steps north in a
row (three or more consecutive 0 moves in his history) or he is burnt out. Use the previous two
functions you wrote to complete this one in three or fewer lines.



Question 5.3

"""

Input: a history of FarmBot’s moves

Output: whether FarmBot needs to be picked up, as defined above

Examples: needs_pickup("01230123") => False

needs_pickup("11100333222") => False

needs_pickup("111000333222") => True, there's a sequence of 000

needs_pickup("0100010011") => True, six 0s

"""

def needs_pickup(history):

Q6. (Bonus)

Create a piece of art (e.g. drawing, poem, short program, anything you like)!

If you are unsure of what to make, select one member of the course staff and make art about

that person. All exams will get full credit for this question even if you leave it blank.



Extra Answers Page (This page is intentionally blank)

You may use this page for additional space for answers; keep it attached to this exam. Clearly
note on the original question page that your answer is on this extra page, and clearly note on

this page what question you are answering.


