
CIS1100.py — Fall 2024 — Exam 2

Full Name: ___

PennID (e.g. 12345678): ____________________________________

My signature below certifies that I have complied with the University of
Pennsylvania’s Code of Academic Integrity in completing this examination.

______________________________ __________________________

Signature Date

Instructions are below. Not complying will lead to a 0% score on the exam.

● Do not open this exam until told by the proctor.
● You will have exactly 60 minutes to take this exam.
● Make sure your phone is turned OFF (not on vibrate!) before the exam starts.
● Food and gum are not permitted—don’t be noisy or messy.
● You may not use your phone or open your bag for any reason, including to retrieve or put

away pens or pencils, until you have left the exam room.
● This exam is closed-book, closed-notes, and closed computational devices.
● If you get stuck on a problem, it may be to your benefit to move on to another question

and come back later.
● All code must be written in proper Python format.
● Do not separate the exam pages. Do not take any exam pages with you. The entire exam

packet must be turned in as is.
● Only answers on the FRONT of pages will be graded. There are two blank pages at the

end of the exam if you need extra space for any graded answers.
● Use a pencil, or blue or black pen to complete the exam.
● If you have any questions, raise your hand and a proctor will come to you.
● When you turn in your exam, you may be required to show your PennCard. If you forgot to

bring your ID, talk to an exam proctor immediately.
● We wish you the best of luck!

Q1 Q2 Q3 Q4 Q5 Q6 (bonus)

Q1. Fill In The Blank

For Q1.1-1.4, write the value that gets printed. For Q1.5, fill in the blank so that the given value gets
printed.

Question 1.1

input = [1, 2, 3, 4]

print(list(map(lambda x: x * x, input)))

Answer:

Question 1.2

python_profs = ["Harry", "Travis"]

java_profs = ["Harry", "Jessica"]

profs = python_profs + java_profs

tas = ["Adi", "Cedric", "Sukya", "Jared", "Molly"]

staff = set(profs) & set(tas)

print(staff)

Answer:

Question 1.3

def mystery_1(a):

if a == 0:

return "0"

if a == 1:

return "1"

if a % 2 == 1:

return mystery_1(a // 2) + "1"

return mystery_1(a // 2) + "0"

print(mystery_1(16))

Answer:

Question 1.4

def mystery_3(x):

d = dict()

for elem in x:

k = elem % 3

d[k] = d.get(k, 0) + elem

return d

print(mystery_3([3, 10, 22, 33, 44, 6]))

Answer:

Question 1.5

For this question, you'll fill in the blank after courses so that the print statement contains an

expression that prints out "Travis".
courses = {

"cis1100": {

"prof": ["Harry", "Travis"],

"language": "python"

},

"cis1200": {

"prof": ["Swap", "Pierce"],

"language": ["ocaml", "java"]

}

}

print(courses_______________________) # what goes in the blank to print "Travis"?

Answer:

Q2. Trading Up (Debugging)

Sukya is registering for courses and decides to write a program to help her decide which courses

to take. In order to do this, she has defined a dataclass like so:

@dataclass

class Course:

name: str

days: str

is_te: boolean

rating: float

name is the name of the course, e.g. "CIS 1100". days is never empty and always contains the
initials of the days on which the course meets, where the only options are M, T, W, H, and F. The

day strings are always provided in this order; that is, Friday is always the last day initial in the

string if it's there. is_te denotes whether a course is a "technical elective". rating is a number
between 0 and 4 that denotes the course quality.

With this Course dataclass, she writes the function
best_replacement(replace: Course, options: list[Course]) -> str:

Which takes in a single course as its first parameter and a list of potential replacement courses.

The function returns the name of the Course with the highest rating that doesn't meet on a

Friday and has the same TE (technical elective) status as the course it would replace (they are

both TEs or neither are TEs). If there's no better class that meets both criteria, the function

should just return the one she was trying to replace.

Help fix Sukya's implementation of best_replacement. In the table that follows, identify the line

on which each of the bugs appears, the part of the code that is incorrect, and the code you can

replace that part with to make it correct. We filled in an example bug on the first line. Note that

there are no further bugs in the function signature—i.e., the input and return types are correct.
There are five other bugs.

1. fed best_replacement(replace: Course, options: list[Course]) -> str:

2. # remove all courses that meet on Friday

3. not_friday = list(filter(lambda c : c[-1] != 'F', options))

4.

5. # remove all courses that don't match the TE status

6. matching_status = [c for c in not_friday if c.is_te or replace.is_te]

7.

8. best_so_far = matching_status[0]

9. for c in matching_status:

10. if c.rating > best_so_far.rating:

11. c = best_so_far

12. return best_so_far

Q3. Complete the Program
Create a Library class to manage a library's collection of books and track book loans. The class will

model books as strings, and it should allow books to be added to the collection, lent out to borrowers,

and returned. Implement methods to add a new book, lend a book to a borrower, return a book, and

list all available books. Complete the code by filling in the blanks to correctly initialize attributes and

manage the library’s inventory and loan status.

Note: dict.pop(key) is a method that returns the value from a dict associated with the given key

and then deletes the key-value mapping from the dict. Use it in one of the blanks!

The code to complete and some examples of the Library's usage are found on the next page.

Line Number Incorrect Code Replacement Code

1 fed def

class Library:

def __init__(self, library_name: str):

____BLANK_0____ = library_name

self.books = set() # set to store available books

self.loans = {} # dict to track loans (key=book title, val=borrower name)

def add_book(self, book_title: str):

if book_title not in ____BLANK_1____:

self.books.____BLANK_2____

else:

print(f"'{book_title}' is already in the library collection.")

def lend_book(self, book_title: str, borrower_name: str):

if book_title in self.books and book_title not in self.loans:

self.____BLANK_3____ = borrower_name

self.books.remove(____BLANK_4____)

else:

print(f"Cannot lend '{book_title}': loaned or not in collection.")

def return_book(self, book_title: str):

if book_title in self.loans:

borrower = self.loans____BLANK_5____

self.books.____BLANK_6____(book_title)

print(f"'{book_title}' has been returned by {borrower}.")

else:

print(f"'{book_title}' was not on loan.")

def get_available_books(self) -> set[str]:

return self.____BLANK_7____

See below for example usage of this class:
library = Library("Van Pelt")

library.add_book("Calculus Blue Guide")

library.add_book("The Great Gatsby")

library.lend_book("Calculus Blue Guide", "Harry")

print(library.get_available_books())

Prints: {'The Great Gatsby'}

library.return_book("Calculus Blue Guide")

return_book will print: 'Calculus Blue Guide' has been returned by Harry.

print(library.get_available_books())

Prints: {'The Great Gatsby', 'Calculus Blue Guide'}

Blank # Code

0

1

2

3

4

5

6

7

Q4: Pandas

Molly is a huge baseball fan and she wants to do some analysis on Major League Baseball

scores. She maintains a file, scores.csv, that tracks the teams that played in each game, the
date the game was played, and each team's score. Here are the first three rows of that CSV when

read into the DataFrame called scores.

INDEX team_a team_b score_a score_b date

0 "Phillies" "Braves" 5 4 09/13/2024

1 "Padres" "Mets" 3 0 09/15/2024

2 "Dodgers" "Phillies" 1 0 10/01/2024

Solve each of the tasks on the next page using Pandas. You can refer to the appendix for some

tools that you'll need. The later tasks can be solved using columns created in the earlier tasks.

We will grade the later tasks assuming that you completed the earlier ones correctly.

Molly realizes that she doesn't have a column to track the winner of each game. Write a line that

adds a column called diff to the DataFrame scores that calculates the difference between team
A's score and team B's score. This could be positive or negative.

scores["diff"] = scores["score_a"] - scores["score_b"]

Follow up by writing a line that adds a column a_wins storing a boolean value that is True when
team_a won the game and False otherwise. (In baseball, higher scores win.)

scores["a_wins"] = scores["diff"] > 0

Molly encoded her data so that Team A represents the team that was playing in their home

stadium, or "at home." Write a few lines of Pandas code that ends by printing the fraction of
games that the Phillies win at home. (Meaning the number of games in which the Phillies were

Team A and won divided by the total number of games in which they were Team A.)

just_phillies = scores[scores["team_a"] == "Phillies"]

total_games = just_phillies.shape[0]

phillies_home_wins = just_phillies[just_phillies["a_wins"]]

total_wins = phillies_home_wins.shape[0]
print(total_wins / total_games)

Q5. Coding Zoo

We’re opening a zoo! Zoos contain Animals, which are of some species and require some food:
class Animal:

def __init__(self, species: str, food_required: int):

self.species = species # e.g. "Lion"

self.food_required = food_required # amount of food in lbs, e.g. 5

Question 5.1

There are also zookeepers, who each specialize in a certain species of animal:
class Keeper:

def __init__(self, specialty: str):

self.specialty = specialty

def specializes(self, a: Animal) -> bool:

…

Inside the Keeper class, we will add a method specializes that takes in an Animal as input

and checks whether the zookeeper specializes in the given Animal’s type. Your implementation

must satisfy these tests:

def test_does_specialize(self):
k = Keeper("Lion")
a = Animal("Lion", 10)
self.assertTrue(k.specializes(a))

def test_not_specializes(self):
k = Keeper("Tiger")
a = Animal("Lion", 10)
self.assertFalse(k.specializes(a))

Finish the method signature, then provide a one line implementation of the method below.

def specializes(self, a: Animal) -> bool:

The Zoo class contains a list of Animals and Keepers, like so:
class Zoo:

def __init__(self, animals: list[Animal], keepers: list[Keeper]):

self.animals = animals

self.keepers = keepers

def has_redundant_keepers(self):

…
def has_enough_keepers(self):

present_species {a.species for a in self.animals}

covered_species = {k.specialty for k in self.keepers}

return len(present_species - covered_species) == 0

Our goal will be to test the bottom two methods: has_redundant_keepers and

has_enough_keepers. Then, you'll implement the first method, has_redundant_keepers, which

return True if the list of keepers contains more than one keeper for any species. Otherwise, it will

return False.

The second method has_enough_keepers, which is implemented for you, will return True if

every Animal in the Zoo has at least one Keeper that specializes in its species. (One Keeper can

care for all Animals of their corresponding species.) Otherwise, it will return False.

Testing, Testing…

Help complete our testing suite!

Question 5.2

Complete test_redundant_keeper_case, which should verify that has_redundant_keeper

value returns the correct value when called on the Zoo created at the start of the test case.

from zoo import Zoo, Animal, Keeper
class Tests(unittest.TestCase):

def test_redundant_keepers_case(self):
animals = [Animal("Lion", 20), Animal("Tiger", 10)]
keepers = [Keeper("Lion"), Keeper("Lion")]
zoo = Zoo(animals, keepers)
TODO: Finish me to verify that has_redundant_keepers()
returns the correct value in this case

Question 5.3

Fill in test_insufficient_keepers (part of the Tests unittest suite from above). This test

should verify that has_enough_keepers returns False in a case where it would be correct to do

so. You will be responsible for constructing your own Zoo for this test.

def test_insufficient_keepers(self):
animals = [Animal("Lion", 20), Animal("Tiger", 10)]

TODO: Write a unit test that verifies that
has_enough_keepers returns False in a case
where there is an animal whose species is not
covered by a keeper.

Question 5.4

Provide an implementation of has_redundant_keepers without using any loops. Recursion,
list/set/dict comprehensions, lists, sets, dicts, and higher order functions are all OK.

def has_redundant_keepers(self):

Q6. (Bonus)

Recommend us something! Anything at all—music, movie, TV, game, book, restaurant, park,

anything. All exams will get full credit for this question, no pressure to make anything in

particular! Pictures are also nice, but make sure you take the time to finish the exam :)

Extra Answers Page (This page is intentionally blank)

You may use this page for additional space for answers; keep it attached to this exam. Clearly
note on the original question page that your answer is on this extra page, and clearly note on

this page what question you are answering.

Appendix

Pandas

Note here that pd refers to the pandas library, df refers to a DataFrame, and s refers to a
Series.

Viewing data

Function Description

df.col Accesses the column named col in df as a Series.

df['col'] Accesses the column named col in df as a Series.

df[['col1', 'col2', ...]]

Accesses a list of columns (here, ['col1', 'col2', ...]) as a

DataFrame.

df.iloc[i] Accesses row i in df as a DataFrame.

df[start:stop:step]

Accesses the rows start (inclusive) to stop (exclusive)

using step size step.

df.head(n=5) Shows the first n rows.

df.tail(n=5) Shows the last n rows.

Describing data

Function Description

df.shape

A tuple of the dimensions of df of the form (num_rows,

num_cols).

df.info()

Prints out summary information about a DataFrame,

including the number of columns, non-null values, and

datatypes.

df.dtypes A Series containing the data type of each column.

df.columns A Series containing all column labels.

df.describe()

Generates a DataFrame with descriptive statistics (count,

mean, standard deviation, median, quartiles, etc.).

df.empty

A bool that indicates whether an entire DataFrame (or

Series) is empty.

df.count() Counts the number of non-null elements in each column.

df.value_counts(normalize=

False)

Counts the number of each value that appears in each

column.

df.nunique() Counts the number of unique values in each column.

df.min(axis=0) Finds the minimum of each row or column.

df.max(axis=0) Finds the maximum of each row or column.

df.mean(axis=0) Finds the mean/average of each row or column.

df.sum(axis=0) Finds the sum of each row or column.

Filtering Operators

For boolean Series s and t,

Operator Python Equivalent (not
proper pandas code)

Description

s & t s and t Both must be true to be true

s | t s or t As long as one is true, the whole thing is true

s ^ t s != t Exactly one is true

~s not s Flips the boolean

Remember that you can use comparison operators with values on Series. For example,

● s > 0

● s == “Hello”

● s <= 8

Set Operations

For sets a and b,

Function Operator Form Description

a.union(b) a | b Creates a new set with the elements
from either a or b.

a.intersection(b) a & b Creates a new set with the elements
that are in both a and b.

a.difference(b) a - b Creates a new set with the elements
that are in a but not b.

a.symmetric_difference(b) a ^ b Creates a new set with elements that
are in either a or b, but not both.

