
Instructor OH in Levine 260:

Harry: Mondays, 10:00-11:15am, Tuesdays, 10:15-11:30am (advising only), 3:45-

5:00pm (everything)

Jessica: Fridays: 1:45-2:45pm

Regular TA OH start next week. Check Ed for OH policies (OHQ.io, online vs. in-

person, etc.)

HW00: Hello, World! is due on Wednesday, September 11th @ 11:59pm

Programming part: complete on Codio, submit on Gradescope

Policies "quiz": complete & submit on Gradescope

Sunday Review Sessions start this weekend

Every Sunday, 10am-12pm. Check Ed soon for room announcement.

STRINGS

CIS 1100 Fall 2024 @ University of Pennsylvania 1

Announcements

Gradescope
Demo

CIS 1100 Fall 2024 @ University of Pennsylvania

Casting

CIS 1100 Fall 2024 @ University of Pennsylvania

Casting is the process of transform a value of one type into a value of a "similar" type.

Done by writing the name of the desired type in parentheses next to the value that

you want to re-type.

May result in a loss of precision when going from "bigger" to "smaller" types

e.g. (int) 3.4 --> 3 or (double) 13 --> 13.0

For our purposes, we'll only consider this as something to be done between

numeric types.

STRINGS

CIS 1100 Fall 2024 @ University of Pennsylvania 2

Forcing Java to Reinterpret Values

Maybe you have two integer-valued double variables:

double a = 4.0;
double b = 13.0;

Writing b / a gives us 3.25 , but what if we wanted to know the result using integer

division? Try to write an expression that does integer division using the variables a and

b .

STRINGS

CIS 1100 Fall 2024 @ University of Pennsylvania 3

Recreating Integer Division

double a = 4.0;
double b = 13.0;

print((int) a / b) // ???
print((int) (a / b)) // ???
print((int) a / (int) b) // ???

STRINGS

CIS 1100 Fall 2024 @ University of Pennsylvania 4

Recreating Integer Division

Casting operator "binds tightly":

(int) a / b transforms a into an int and then divides that by b .

Not always necessary:

double x = 14; // java automatically promotes (casts) 14 -> 14.0
int y = 13.0; // compilation error! even though 13.0 == 13
int z = (int) 14.1 // works! z stores the value 14 now

Java automatically promotes values from a "smaller type" into a bigger one.

STRINGS

CIS 1100 Fall 2024 @ University of Pennsylvania 5

Details about Casting

Strings &
Characters

CIS 1100 Fall 2024 @ University of Pennsylvania

Learning Objectives

To be able to create and manipulate String values

To be able to compare String values

STRINGS

CIS 1100 Fall 2024 @ University of Pennsylvania 6

Aside: Literal Values

Literal values are "Hard-coded" values that are written in the code exactly as how

they should be evaluated.

Used most often for initializing a variable or as part of an expression

int a = 3; // 3 is an int literal value

double b = a * 3.14; // 3.14 is a double literal

String s = "3.14"; // "3.14“ is a string literal

STRINGS

CIS 1100 Fall 2024 @ University of Pennsylvania 7

Strings

Strings hold sequences of characters (a, b, c, $, etc)

Can perform operations on strings like concatenation and others

Anything between "" is a string literal

Strings are “objects” of the String class, although they behave in many ways like a

primitive type, so we study it now.

STRINGS

CIS 1100 Fall 2024 @ University of Pennsylvania 8

String Variable Declaration & Initialization

String variables work just like int , double , and boolean variables: declare them by

writing the type & name of the variable and then give them an initial value.

String variableName = "stringLiteral";
String firstName = “Lisa”;

STRINGS

CIS 1100 Fall 2024 @ University of Pennsylvania 9

String values

A String holds a sequence of characters

Characters include things like 'a', 'b', '1', '$', '%', '.', etc.

These characters are stored in a sequence, and are numbered from the front of the

sequence starting with 0. The last element is at index length – 1.

String example = "Hello!";
 012345
String birthday = "August 29";
 012345678
String empty = "";

We usually start counting at 0 in programming. Will see this more with arrays :)

STRINGS

CIS 1100 Fall 2024 @ University of Pennsylvania 10

String values: null

A String, since it is techinically an object type, can be initialized to a null reference

A null reference means that the variable does not refer to a space in memory

String variableName; // default String variable value is null
String nulledVar = null; // this sets a variable to null explicitly

 More on null in future lectures about objects. Just keep this in the back of your mind

for now.

STRINGS

CIS 1100 Fall 2024 @ University of Pennsylvania 11

String operations: Concatenation

Use the + or += operators to concatenate (combine) two Strings

String a = "Serena";
String b = " Williams";
String c = a + b;
System.out.println(c); // prints Serena Williams

STRINGS

CIS 1100 Fall 2024 @ University of Pennsylvania 12

String operations: Concatenation

Use the + or += operators to append a primitive type value to a String

will automatically convert that value to String

String a = "Serena";
String b = " Williams";
String c = a + b + 100;
System.out.println(c); // prints Serena Williams100

STRINGS

CIS 1100 Fall 2024 @ University of Pennsylvania 13

Aside: Object methods and .
The + and += operator on strings is somewhat unique. Normally performing an

operation on an object requires different syntax: the . operator.

String a = "Serena";
String b = " Williams";
String c = a.concat(b); // same as a + b
System.out.println(c); // prints Serena Williams

 There is NO space around the .

STRINGS

CIS 1100 Fall 2024 @ University of Pennsylvania 14

String methods: length()
length() method returns the number (an int) of characters in the string, including

spaces and special characters like punctuation.

String a = "Serena";
int len = a.length(); // S, e, r, e, n, a is 6 characters
System.out.println(len); // prints 6

STRINGS

CIS 1100 Fall 2024 @ University of Pennsylvania 15

String methods: substring()
substring(int from, int to)

returns a new string with the characters in the current string starting with the

character at the from index and ending at the character before the to index

String a = "Serena";
String b = a.substring(0, 3);
System.out.println(b); // prints "Ser"
String c = a.substring(2, 4);
System.out.println(c); // prints "re"

Serena
012345

STRINGS

CIS 1100 Fall 2024 @ University of Pennsylvania 16

String methods: substring()
substring(int from)

returns a new string with all the characters in the current string starting after the

character at the from index.

String a = "Serena";
String c = a.substring(3);
System.out.println(c); // prints "ena"

Serena
012345

STRINGS

CIS 1100 Fall 2024 @ University of Pennsylvania 17

String methods: indexOf()
indexOf(String str) searches for the string str in the current string and returns:

the index of the beginning of str in the current string,

or -1 if it isn’t found

String a = "Serena";
int x = a.indexOf("er"); // x has value 1
int y = a.indexOf("ena"); // y has value 3
int z = a.indexOf("sa"); // z has value -1

STRINGS

CIS 1100 Fall 2024 @ University of Pennsylvania 18

Note
Note that lastIndexOf is a thing

String methods: charAt()
str.charAt(int index) returns the char at position index in the input str :

index must be between 0 and str.length() - 1

return type is char , which is a data type used for storing individual characters

String a = "Serena";
char x = a.charAt(0); // x has value 'S'
char y = a.charAt(2); // y has value 'r'
char z = a.charAt(5); // z has value 'a'

STRINGS

CIS 1100 Fall 2024 @ University of Pennsylvania 19

Note
Note that lastIndexOf is a thing

Comparing Strings

Strings (and objects) cannot be compared using operators like == , < , > .

The method first.compareTo(String second) compares two strings character by

character.

If they are equal, it returns 0

If the first string is alphabetically ordered before the second string, it returns a

negative number

If the first string is alphabetically ordered after the second string, it returns a

positive number

STRINGS

CIS 1100 Fall 2024 @ University of Pennsylvania 20

Comparing Strings

/// S comes before W in the alphabet
String a = "Serena";
String b = "Williams";
System.out.println(a.compareTo(b)); // prints -4;
System.out.println(b.compareTo(a)); // prints 4;

STRINGS

CIS 1100 Fall 2024 @ University of Pennsylvania 21

String Equality

DO NOT USE == TO CHECK IF TWO STRINGS ARE EQUAL!

STRINGS

CIS 1100 Fall 2024 @ University of Pennsylvania 22

 TO CHECK IF TWO STRINGS ARE EQUAL! DO NOT USE TO CHECK IF TWO

STRINGS ARE EQUAL! DO NOT USE == TO CHECK IF TWO STRINGS ARE EQUAL! DO

NOT USE == TO CHECK IF TWO STRINGS ARE EQUAL! DO NOT USE == TO CHECK IF

TWO STRINGS ARE EQUAL! DO NOT USE == TO CHECK IF TWO STRINGS ARE

EQUAL! DO NOT USE == TO CHECK IF TWO STRINGS ARE EQUAL! DO NOT USE ==
TO CHECK IF TWO STRINGS ARE EQUAL! DO NOT USE == TO CHECK IF TWO

STRINGS ARE EQUAL! DO NOT USE == TO CHECK IF TWO STRINGS ARE EQUAL! DO

NOT USE == TO CHECK IF TWO STRINGS ARE EQUAL! DO NOT USE == TO CHECK IF

TWO STRINGS ARE EQUAL! DO NOT USE == TO CHECK IF TWO STRINGS ARE

EQUAL! DO NOT USE == TO CHECK IF TWO STRINGS ARE EQUAL! DO NOT USE ==
TO CHECK IF TWO STRINGS ARE EQUAL! DO NOT USE == TO CHECK IF TWO

STRINGS ARE EQUAL! DO NOT USE == TO CHECK IF TWO STRINGS ARE EQUAL! DO

NOT USE == TO CHECK IF TWO STRINGS ARE EQUAL! DO NOT USE == TO CHECK IF

TWO STRINGS ARE EQUAL! DO NOT USE == TO CHECK IF TWO STRINGS ARE

EQUAL! DO NOT USE == TO CHECK IF TWO STRINGS ARE EQUAL! DO NOT USE ==
TO CHECK IF TWO STRINGS ARE EQUAL! DO NOT USE == TO CHECK IF TWO

STRINGS ARE EQUAL! DO NOT USE == TO CHECK IF TWO STRINGS ARE EQUAL! DO

NOT USE TO CHECK IF TWO STRINGS ARE EQUAL! DO NOT USE TO CHECK IF

STRINGS

CIS 1100 Fall 2024 @ University of Pennsylvania 23

String equality

The equals(String other) method compares the two strings character by character

and returns a boolean .

String a = "Serena";
String b = "Williams";
System.out.println(a.equals(b)); // prints false
System.out.println(a.equals(a)); // prints true

compareTo , equals and most string methods are case-sensitive!

"HI".equals("hi"); // returns false

STRINGS

CIS 1100 Fall 2024 @ University of Pennsylvania 24

Live Demo: StringManips.java

Write a program StringManips.java that does two things

Problem 1:

Given a string, we will print a new string made of 3 copies of the last 2 characters

of the original string.

Problem 2:

Given a string, the program will print a version without both the first and

last characters

Both assume the input strings have length >= 2.

STRINGS

CIS 1100 Fall 2024 @ University of Pennsylvania 25

From Strings to Numbers

A String can "represent" a number, but it's still not an int or double

"3.431" and "-52" both look like numbers

but "3.431" + "-52" is "3.431-52"

Two handy tools:

Integer.parseInt(someString) : convert a String that could represent an

integer into an int value

Double.parseDouble(someString) : convert a String that could represent any

number into a double value

STRINGS

CIS 1100 Fall 2024 @ University of Pennsylvania 26

The char
Data Type

CIS 1100 Fall 2024 @ University of Pennsylvania

Strings

Recall that Strings are sequences of characters:

"Harry Smith" string of 11 characters including space (' ')

"215-898-3500" string of 12 characters including digits and '-'

"a" string of one chracter, 'a'

"" empty string (string of 0 characters)

STRINGS

CIS 1100 Fall 2024 @ University of Pennsylvania 27

String Iteration Toolkit

Given a String s ...

determine its length using s.length()

get a character at a given position i using s.charAt(i) .

i must be between 0 and s.length() - 1

for (int i = 0; i < s.length(); i++) {
 System.out.println(s.charAt(i));
}

STRINGS

CIS 1100 Fall 2024 @ University of Pennsylvania 28

char
char is a primitive data type used to store a single character.

char literals are expressed using single quotes ('')

'a', '8', ' ' are all char values

'aa' is not a valid char because it expresses two characters!

char values are represented using letters/digits/punctuation, but they are

represented internally as small integers!

Computers only understand numbers (just 0 and 1, really), so we have to be

clever about how we get them to think about symbols like letters.

STRINGS

CIS 1100 Fall 2024 @ University of Pennsylvania 29

ASCII, Unicode, &
char

ASCII (American Standard Code for

Information Interchange) is a system

of assigning numbers to characters in

order to store them in computers.

System allowed for representing

128 different symbols using

numbers 0-127 .

Fine back in the day, but quite

limited, especially outside of

American English alphabet

STRINGS

CIS 1100 Fall 2024 @ University of Pennsylvania 30

ASCII, Unicode, & char

Unicode is also a system of assigning numbers to characters in order to store

them in computers.

System is very complicated—not exactly as simple as 'A' == 65

Can express characters from multiple alphabets and also emoji ()

Technically, Java uses the 16 bit Unicode standard to map char values to integers,

but we'll often say "ASCII" (as-kee) for shorthand

STRINGS

CIS 1100 Fall 2024 @ University of Pennsylvania 31

ASCII, Unicode, & char

STRINGS

CIS 1100 Fall 2024 @ University of Pennsylvania 32

char Values as Numbers

"Given a char c , how can I ask if it's a lowercase letter from 'a'-'z'?"

Since char values have a number representation, it means that we can

straightforwardly order them using > and <

if ('a' <= c && c <= 'z') {
 System.out.println(c + " is a lowercase letter");
}

STRINGS

CIS 1100 Fall 2024 @ University of Pennsylvania 33

char Values as Numbers

"Given a char c , how can I turn it from an uppercase letter to a lowercase letter?"

Since char values have a number representation, it means that we can modify

them using simple arithmetic

'a' - 'z' are 97-122 respectively

'A' - 'Z' are 65-90

The difference between a lowercase and uppercase letter is 32

char lowercase = c + 32;

STRINGS

CIS 1100 Fall 2024 @ University of Pennsylvania 34

Use concatenation to append a char on to the end of an empty string ("") in order to

get a String that contains just the char value.

char c = 'a';
String s = "" + c;
System.out.println(s); // prints "a"

 Use this for Letter Viewer in HW1!

STRINGS

CIS 1100 Fall 2024 @ University of Pennsylvania 35

Converting a char to a String

	Announcements
	Gradescope Demo
	Casting
	Forcing Java to Reinterpret Values
	Recreating Integer Division
	Recreating Integer Division
	Details about Casting

	Strings & Characters
	Learning Objectives
	Aside: Literal Values
	Strings
	String Variable Declaration & Initialization
	String values
	String values: null
	String operations: Concatenation
	String operations: Concatenation
	Aside: Object methods and .
	String methods: length()
	String methods: substring()
	String methods: substring()
	String methods: indexOf()
	String methods: charAt()
	Comparing Strings
	Comparing Strings
	String Equality
	String Equality
	String equality
	Live Demo: StringManips.java
	From Strings to Numbers
	The char Data Type
	Strings
	String Iteration Toolkit
	char
	ASCII, Unicode, & char
	ASCII, Unicode, & char
	ASCII, Unicode, & char
	char Values as Numbers
	char Values as Numbers
	Converting a char to a String

