
Page 1

CIS 1100 — Spring 2024 — Exam 2

Full Name: ___

Recitation #: __

PennID (e.g. 12345678, not PennKey): ____________________________________

My signature below certifies that I have complied with the University of
Pennsylvania’s Code of Academic Integrity in completing this examination.

______________________________ __________________________

Signature Date

Instructions are below. Not complying will lead to a 0% score on the exam.

● Do not open this exam until told by the proctor.

● You will have exactly 60 minutes to take this exam.

● Make sure your phone is turned OFF (not on vibrate!) before the exam starts. You may not
use your phone or open your bag for any reason.

● Food and gum are not permitted—don’t be noisy or messy.

● This exam is closed-book, closed-notes, and closed computational devices.

● If you get stuck on a problem, it may be to your benefit to move on to another question
and come back later.

● All code must be written in proper Java format, including all curly braces and semicolons.

● Do not separate the exam pages. Do not take any exam pages with you. The entire exam
packet must be turned in as is.

● There are two blank pages at the end of the exam if you need extra space for any graded
answers.

● If you have any questions, raise your hand and a proctor will come to you.

● When you turn in your exam, you may be required to show your PennCard. If you forgot to
bring your ID, talk to an exam proctor immediately.

● We wish you the best of luck!

Q1 Q2 Q3 Q4 Q5 Bonus

Short
Answers

Reading &
Debugging
Code

Writing &
Testing
Code

Recursion
(with Tours)

Nodes

PennID (e.g. 12345678): _____________________ Page 2

Q1. Explain Yourself!

All answers for questions in this section should be kept as brief as possible. Sentence fragments

are acceptable. Longer answers will be judged more harshly, and mixtures of correct, incorrect,

or irrelevant information will not earn full credit. All answers go on Page 3.

Q1.1 Nodes & Tours

When building a Tour using heuristics, we repeatedly add a Point to an existing Tour, growing its

size by 1 each time. In fact, we don't need to know how many Points will be in the Tour at the

end. Briefly justify why it is easier or simpler to implement a Tour with Nodes instead of
arrays of Points.

Q1.2 Records & Objects

When reading data from an external source, we can represent the data in our programs using

Record Types. We could also write a class that replicates all of the behaviors of a record, but this

isn't necessarily a good idea. Briefly explain from either a design perspective or an
ease-of-use perspective why you might prefer to define a Record Type instead of a Class
when working with data.

Q1.3 Tests & Correctness

TA Jason's homework didn't earn all points on the autograder despite the fact that it passed all

four of the JUnit tests he wrote, and he is very confused. Briefly explain to Jason why it is
possible that his code has faults despite passing his four test cases.

Q1.4 Conditionals & Recursion

TA Ngaatendwe can often be heard saying that "you can't understand recursion unless you

understand conditionals!" And she's right to say it. Briefly explain why conditionals are
important to writing recursive functions.

Q1.5 Redundant Information

In Furious Flying Fish, the Arena class contained an instance variable ArrayList<Target>
targets. Although the condition for winning is based on the number of elements stored in this
list, we did not separately store that information in an instance variable. Briefly explain why it
is unnecessary to separately store the number of targets remaining.

Q1.6 Redundant Information?

Java provides the == operator to check if two values are equal. Separately, we might write an
.equals() method for an object to check if two objects of a type are equal. Briefly explain with
reference to references why we might want to have two different notions of "equals" in
Java.

PennID (e.g. 12345678): _____________________ Page 3

Q1.1
don't have to resize the array repeatedly/don't know the size of the array to make/inserting in
the middle of a tour only requires changing one reference/inserting in the middle of an array
requires shifting everything down by one

Q1.2
Correct: shorter to write/records are one-liners/records are
immutable but classes are not by default

Q1.3
Correct: the tests are not exhaustive/there is a fault not
covered by a test/the tests are incorrectly written/the tests
are redundant

Q1.4
Correct: recursion works with cases which are usually
expressed with conditionals/need to decide **if** this is a
base case or recursive case/need to have the function
behave differently on different "sizes" of inputs

Q1.5
Correct: use targets.size()/we can ask the list how many
elements it contains/would be tedious to update the number
of targets each time we remove one

Q1.6
Correct: objects can contain identical data even if they are
stored at different locations/== checks for referential
equality whereas .equals() checks for structural equality/two
references might not be equal even though their pointees
are semantically the same.

PennID (e.g. 12345678): _____________________ Page 4

Q2. Unit Tests & Debugging

Q2.1

Here is a buggy implementation of binary

search inside the file Exam.java that is

supposed to find the position of a target

element in an input array. If the target

cannot be found, the function should

return -1. You can assume that the input

array is sorted and contains no

duplicates. Consider the following four

unit tests and mark the names of the
ones that fail.

1. public int binarySearch(int[] arr, int target)
{
2. int left = 0;
3. int right = arr.length / 2;
4. while (left < right) {
5. int mid = (left + right) / 2;
6. if (arr[mid] == target) {
7. return mid;
8. } else if (arr[mid] < target) {
9. left = mid + 1;
10. } else {
11. right = mid - 1;
12. }
13. }
14. return -1;
15. }

testOne testTwo testThree testFour

@Test
public void testOne() {

int[] arr = { 1, 2, 3, 4, 5 };
int target = 1;
int expected = 0;
int actual = binarySearch(arr, target);
assertEquals(expected, actual);

}

@Test
public void testThree() {
int[] arr = { 1, 2, 3, 4, 5 };
int target = 3;
int expected = 2;
int actual = binarySearch(arr, target);
assertEquals(expected, actual);

}

@Test
public void testTwo() {
int[] arr = { 1, 2, 3, 4, 5 };
int target = 2;
int expected = 1;
int actual = binarySearch(arr, target);
assertEquals(expected, actual);

}

@Test
public void testFour() {
int[] arr = { 1, 2, 3, 4, 5 };
int target = 4;
int expected = 3;
int actual = binarySearch(arr, target);
assertEquals(expected, actual);

}

Q2.2 Finally, fix the implementation of binarySearch. Write the numbers of the two lines that
need to be fixed and then write the fixed versions of the lines.

Line Number Fixed Line

3 int right = arr.length - 1

4 while (left <= right) {

PennID (e.g. 12345678): _____________________ Page 5

Q3. Writing Objects

You know how some cool stores calculate your total amount due without the customer needing to

scan their items? Your job is to test & write a class that models an automated shopping cart. It

will keep track of the items in the cart, allow for adding & removing items, and calculate the total

price of all items, factoring in any discounts due to sales. Study ShoppingCart.java below and

Item.java in the appendix.

import java.util.ArrayList;

public class ShoppingCart {

private ArrayList<Item> items; // Item is a record, see appendix

public ShoppingCart() {

items = new ArrayList<>(); // Creates an empty cart.

}

// Create a new item with name and price, add to end of list.

public void addItem(String name, double price) {

items.add(new Item(name, price));

}

// Remove the first item in the list with a matching name.

public void removeItem(String name) {

for (int i = 0; i < items.size(); i++) {

if (items.get(i).name().equals(name)) {

items.remove(i);

return;

}

}

}

// Returns an array of all of the item names.

public String[] listContents() {

String[] contents = new String[items.size()];

for (int i = 0; i < items.size(); i++) {

contents[i] = items.get(i).name();

}

return contents;

}

// See Q3.3

public double calculateSubtotal(String saleCategory, double discount) {

// TODO!

}

}

PennID (e.g. 12345678): _____________________ Page 6

Writing Tests

Complete the two tests on the remove method below. The tests you write should pass, and they
should verify the behavior specified by the function names and comments. You can reference

other completed test cases in ShoppingCartTest.java, included in the appendix.

Q3.1 Test that remove has no effect on the cart if provided item name is not present

@Test

public void testRemoveHasNoEffectWhenProvidedNameIsAbsent() {

ShoppingCart cart = new ShoppingCart();

cart.addItem("Banana", 1.50);

cart.addItem("Strawberry", 1.50);

cart.addItem("Apple", 1.50);

cart.removeItem("Cherry"); // nothing should change about the cart!

// TODO: Finish the test to verify that no items were removed.

int expected = 3;

int actual = cart.listContents().length;

assertEquals(expected, actual);

}

Q3.2 Test that remove causes the first matching item to be deleted from the list.

@Test

public void testRemoveWorksOnFirstMatchingItem() {

ShoppingCart cart = new ShoppingCart();

cart.addItem("Banana", 1.50);

cart.addItem("Strawberry", 1.50);

cart.addItem("Banana", 1.50);

cart.removeItem("Banana"); // the banana at index 0 should be removed

// TODO: Use listContents to verify that the correct item was removed.

String expected = "Strawberry";

String actual = cart.listContents()[0].name();

assertEquals(expected, actual);

}

Q3.3 Writing calculateSubtotal

Provide an implementation for the calculateSubtotal method. This method should sum up the

prices of all items in the cart subject to any discounts. The discount input should be applied to

PennID (e.g. 12345678): _____________________ Page 7

any item in the list items which has saleCategory as a substring of its name. For example, the
price of an item with the name "red beans" and the price of 1.00 should be discounted by 20%

when we call calculateSubtotal("red", 0.2). If that were the only item in the cart, the subtotal

would consequently be 0.80. There are more examples in ShoppingCartTest.java in the
appendix.

Hint: you may find it useful to use one or more String methods; a set of these is also listed in the

appendix.

public double calculateSubtotal(String saleCategory, double discount) {

double totalCost = 0;

for (int i = 0; i < items.size(); i++) {

if (items.get(i).name.contains(saleCategory)) {

totalCost += items.get(i).fullPrice * (1 - discount);

} else {

totalCost += items.get(i).fullPrice;

}

}

return totalCost;

}

PennID (e.g. 12345678): _____________________ Page 8

Q4. Recursion & Tours

Recall that a Tour is a data structure that allows us to represent an expandable sequence of

Nodes, starting and ending in the same location. The Tour consists of two instance variables:

head and lastNode, which contain references to the first and final Nodes. These two Nodes
should contain a reference to the same Point; other Nodes also each contain a reference to a

Point.

In this section, you will write a method insertLast() that calls a recursive helper
insertLastHelper() that inserts a point into a Tour right before the lastNode. This is similar to
insertInOrder from HW06 in that the relative position of the insertion is always the same each

time the method is called. Your solution must be recursive in order to receive credit.

Q4.1 Before writing code, complete/evaluate these statements:

How many Nodes should be constructed
when inserting a Point into an empty
Tour?

0 1 2

Which of the following conditions define
an empty Tour?

head is null head & lastNode
contain the same
Point

How can we identify which Node n is the
correct one to insert after?

lastNode ==
n.next.next

lastNode.next == n

lastNode == n lastNode == n.next

If we place a new Node o using
insertLast(), which should be true about
o?

head.next == o lastNode.next == o

lastNode == o lastNode == o.next

PennID (e.g. 12345678): _____________________ Page 9

Q4.2 Now, complete the implementation of the function insertLastHelper(), which takes in a
Node n and a Point p. If n is the proper Node to insert after, then the method will create a new
Node with p and insert it. Otherwise, it should make a recursive call to navigate to the proper
Node.

private void insertLastHelper(Point p, Node n) {

// Base case: If the Tour is currently empty

if (n == null) {

lastNode = new Node(p, null);

head = new Node(p, lastNode);

return;

}

// Base case: If n is the proper node to insert after

if (n.next == lastNode) {

n.next = new Node(p, lastNode);

return;

}

// Recursive case: If n is not the proper node to insert after,

// keep recursing down the Tour towards the end.

insertLastHelper(p, n.next);

}

Q4.3 Finally, complete insertLast() by providing the values for the initial call to the recursive
helper. You should not need any additional space to write this; it can be done in one line.

private void insertLast(Point p) {

insertLastHelper(p, head);

}

PennID (e.g. 12345678): _____________________ Page 10

Q5. Nodes

For Question 5, assume we have the following Node class:

/**

* This node class will store String values.

*/

public class Node {

// public instance variables

public String data;

public Node next;

public Node(String data, Node next) {

this.data = data;

this.next = next;

}

}

Question 5.1:

Given the following state of nodes:

rearrange the references so that the variables & nodes look like:

PennID (e.g. 12345678): _____________________ Page 11

To be clear, you do not have to generalize this to work on any sequence of Nodes. You are given

the chains drawn in the first image and you have to transform it into the chain drawn in the

second image.

NOTE: you are not allowed to access or modify the value in any node’s data instance variable,
and you are not allowed to allocate a new node (e.g. the code you write should not contain new

Node(..., ...) in it.)

You are allowed to create Node reference variables with something like: Node temp = a;

public static void main(String[] args) {

Node a = new Node("2", null);

Node b = new Node("5", null);

b.next = new Node("3", null);

Node c = new Node("4", null);

c.next = new Node("1", null);

// your solution here

c.next.next = b.next;

b.next.next = a;

a.next = c;

a = c.next;

a.next.next.next.next = b;

c = b;

b = a.next.next;

c.next = null;

PennID (e.g. 12345678): _____________________ Page 12

}

PennID (e.g. 12345678): _____________________ Page 13

Question 5.2:

Complete the following function hasDuplicateAtOffset():

/**

* Checks if there is a node with data equal to head.data at the specified

* offset from the head node. (Diagram examples below.)

* Inputs: head, the head node of the linked list

* idx, the index of the node to compare with the head node

* returns true if there is a node with identical data to head's data

* at the specified offset, false if head is null,

* there is no node at the specified offset,

* or if the data is different in the two nodes

*/
public static boolean hasDuplicateAtOffset(Node head, int idx) {

int count = 0;

Node curr = head;

while (curr != null && count < idx) {

count++;

curr = curr.next;

}

if (count < idx || curr == null) {

return false;

}

return curr.data.equals(head.data);

}

hasDuplicateAtOffset(warning, 1) → False, since "drink" and "deep" are not equal.
hasDuplicateAtOffset(warning, 2) → True, since "drink" and "drink" are equal.

PennID (e.g. 12345678): _____________________ Page 14

hasDuplicateAtOffset(warning, 5) → False, since there is no Node at offset of 5.

Bonus:

Draw your TA(s)! Or, if you're not feeling artistic, Recommend something for your grading

TAs—movie, book, song, life advice… All exams will get full credit for this question, answer as

seriously as you would like!

Room for Extra Answers
You may use this page for additional space for answers; keep it attached to this exam. Clearly

note on the original question page that your answer is on this extra page, and clearly note on

this page what question you are answering.

PennID (e.g. 12345678): _____________________ Page 15

Appendix

Lists

method signature purpose

get(int i) return the value at position i in the List.

set(int i, E e) set the value at position i in the List to be e.

size() return the number of values stored in the List.

remove(int i) remove and return the value stored at position i in the List.

add(E e) insert the value e at the end of the List.

PennID (e.g. 12345678): _____________________ Page 16

add(int i, E e) insert the value e at position i in the List. i must be between 0 and

size().

Strings

method signature purpose

char charAt(int i) return the char at position i in the String

int length() return the number of characters in the String

int indexOf(String s) return the index of the first occurrence of the substring s, or -1 if it is

not present

boolean

contains(String s)

return true if the substring s is present, or false otherwise

Item.java

public record Item(String name, double price) {}

ShoppingCartTest.java

public class ShoppingCartTest {

@Test

public void testAddFirstItem() {

ShoppingCart cart = new ShoppingCart();

cart.addItem("Apple", 1.00);

// expected, then actual

assertEquals(1, cart.listContents().length);

}

@Test

public void testRemoveOnlyItem() {

ShoppingCart cart = new ShoppingCart();

cart.addItem("Banana", 1.50);

PennID (e.g. 12345678): _____________________ Page 17

cart.removeItem("Banana");

assertEquals(0, cart.listContents().length);

}

@Test

public void testCalculateTotalCostWithRedDiscount() {

ShoppingCart cart = new ShoppingCart();

cart.addItem("red beans", 1.00); // contains red

cart.addItem("apple (red delicious)", 1.00); // contains red

cart.addItem("blue raspberries", 1.00); // doesn't contain red

assertEquals(2, cart.calculateSubtotal("red", 0.5), 0.01); // 50% discount

}

@Test

public void testCalculateTotalCostWithNoDiscountedItems() {

ShoppingCart cart = new ShoppingCart();

cart.addItem("Chocolate", 5.00);

cart.addItem("Apple", 5.00);

cart.addItem("Banana", 5.00);

assertEquals(15, cart.calculateSubtotal("no match", 0.5), 0.01); // 50% discount

}

}

