

CIS 110 — Introduction to Computer Programming

Summer 2014 — Final

Name:� __

PennKey (e.g., bhusnur4): __

My signature below certifies that I have complied with the University of Pennsylvania’s Code of

Academic Integrity in completing this examination.

__ __________________________

Signature Date

Instructions:

• Do not open this exam until told to do so by the

proctor. You will have exactly 115 minutes to finish it.

• Make sure your phone is turned OFF (not to vibrate!)

before the exam starts.

• Food, gum, and drink are strictly forbidden.

• You may not use your phone or open your bag for

any reason, including to retrieve or put away pens or

pencils, until you have left the exam room.

• This exam is closed-book, closed-notes, and closed-

computational devices.

• If you get stuck on a problem, it may be to your benefit

to move on to another question and come back later.

• All code must be written out in proper Java format,

including all curly braces and semicolons.

• Do not separate the pages. If a page becomes loose,

reattach it with the provided staplers.

• Staple all scratch paper to your exam. Do not take any

sheets of paper with you.

• If you require extra paper, please use the backs of the

exam pages or the extra pages provided at the end of the

exam. Clearly indicate on the question page where the

graders can find the remainder of your work (e.g.,

“back of page” or “on extra sheet”).

• Use a pencil, or blue or black pen to complete the exam.

• If you have any questions, raise your hand and a proctor

will come to answer them.

• We wish you the best of luck. Enjoy the rest of your

summer!

Scores: [For instructor use only]

Question 0

1 pt

Question 1

17 pts

Question 2

16 pts

Question 3

13 pts

Question 4

13 pts

Total:

60 pts

1

0.) THE EASY ONE (1 point)

• Check that your exam has all 11 pages (excluding the cover sheet and scratch paper).

• Write your name on the front of the exam.

• Sign the certification that you comply with the Penn Academic Integrity Code.

1.) RECURSION (17 points total)

1.1) Bad Sierpinski (2 points)

A student wrote the following code for the Sierpinski triangle assignment. If you look carefully,

you will notice a logical flaw which results in a weird shape when they run the program. Which

shape will it result in? Circle the result of the code below. Assume that singleTriangle()

draws a single equilateral triangle with the bottom vertex at (x, y).

public class Sierpinski {

 public static void sierpinski(int n, double size, double x, double y) {

 if (n == 0) {

 return;

 }

 singleTriangle(size, x, y);

 sierpinski(n - 1, size / 2, x, y + size * Math.sqrt(3) / 2.0);

 sierpinski(n - 1, size / 2, x – size / 2, y);

 }

 public static void main(String[] args){

 sierpinski(3, 0.5, 0.5, 0);

 }

}

2

1.2.) Cruel recursion (10 points total)

This scarily named class is doing something with arrays but has very few comments. The

comments that are there are correct. Find out what it is doing.

1) What will be printed when we run java RecursiveNightmare? (6 points)

2) In 20 words or fewer, explain what meanie() does. meanie() is a weird name for a

function; what would be a better name for it? (4 points)

public class RecursiveNightmare {

 public static double meanie(int[] x) {

 int kruger = x.length;

 if (kruger == 0) {

 return 0;

 }

 if (kruger == 1) {

 return x[0];

 }

 int[] temp = new int[kruger / 2];

 int[] temp2 = new int[kruger – kruger / 2];

 // copy half the array into temp

 for (int i = 0; i < kruger / 2; i++) {

 temp[i] = x[i];

 }

 // copy the second half into temp2

 for (int i = kruger / 2; i < kruger; i++) {

 temp2[i – kruger / 2] = x[i];

 }

 double freddie = temp.length + temp2.length;

 return (meanie(temp) * temp.length

 + meanie(temp2) * temp2.length) / freddie ;

 }

 public static void main(String[] args) {

 int[] abc = {1, 0 , -1, 2, 2, -1, 1, 0};

 double r = meanie(abc);

 System.out.println(r);

 }

}

3

1.3) Walk, trot, Cantor, gallop and recurse! (5 points)

One popular recursive drawing corresponds to a famous mathematical construction by Georg

Cantor. The Cantor set is created by repeatedly deleting the open middle third of a set of line

segments. Complete the cantorize() and main() functions so that when the Cantor

class is run with a command-line argument N, a representation of the Cantor set is drawn to N

levels. The command java Cantor 6 should draw a Cantor set to 6 levels (beginning our

numbering from 1), as seen in the picture below. Your code must involve recursion.

As long as the pattern below is produced to any scale, your answer is correct. You may assume

that drawLine(x, y, len) draws a horizontal line beginning at (x, y) with length len.

The exact pixel value of the line length does not matter.

public class Cantor {

 public static void drawLine(double x, double y, double len) {

 StdDraw.line(x, y, x + len, y);

 }

 public static void cantorize(/* TODO */) {

 // TODO – complete the body of this method

 }

 public static void main(String[] args) {

 // TODO – complete the body of this method

 }

}

4

2) OOPs :((16 points total)

2.1) True or false? To initialize a variable of type Object, you have to call the constructor of

Object. (1 point)

2.2) Pow (5 points)

Here is the code for a class representing complex numbers (from the textbook). We would like to

add another method called pow() that takes an integer i and computes the value of the complex

number raised to the ith power. Write the pow() method.

Remember that a to the ith power is a × a × a × … i times. You can assume that i is positive.

public class Complex {

 private final double re;

 private final double im;

 public Complex(double real, double imag) {

 re = real;

 im = imag;

 }

 public String toString() { return re + " + " + im + "i"; }

 public double abs() { return Math.sqrt(re * re + im * im); }

 public Complex plus(Complex b) {

 double real = re + b.re;

 double imag = im + b.im;

 return new Complex(real, imag);

 }

 public Complex times(Complex b) {

 double real = re * b.re – im * b.im;

 double imag = re * b.im + im * b.re;

 return new Complex(real, imag);

 }

 // TODO – write the pow() method here

}

5

2.3) Bugs (7 points)

The following attempt has been made at writing a class with some instance variables and

methods. It is riddled with bugs. Correct these bugs. (Sorry, we are not telling you the number

of bugs this time.) Fill your answers in the next page where we have a blank space for each line;

you may not need all of the spaces provided. You may assume that the author of the code has

given the fields and methods names that reflect their intention.

1 public class StudentDemo {

2 public static void main(String[] args){

3 // create a student named Eric Eaton

4 Student s = Student("Eric Eaton", 19, "South Korea");

5 if (s.canVote()) {

6 System.out.println("The student named " + s.name + " can vote");

7 }

8 }

9 }

10

11 class Student {

12 private String name;

13 private String country = "Canada";

14 private int age = 18;

15

16 public Constructor(String n, String ctry, int age) {

17 // initialize name, country and age

18 String country = ctry;

19 name = n;

20 age = age;

21 }

22

23 public static int getVotingAge(String country) {

24 if (country.equals("Singapore")) return 21;

25 else if (country.equals("South Korea")) return 19;

26 }

27

28 public boolean canVote() {

29 if (age >= getVotingAge()) return false;

30 return true;

31 }

32 } // end of Student class

6

Line ____________ should be replaced by

Line ____________ should be replaced by

Line ____________ should be replaced by

Line ____________ should be replaced by

Line ____________ should be replaced by

Line ____________ should be replaced by

Line ____________ should be replaced by

Line ____________ should be replaced by

Line ____________ should be replaced by

Line ____________ should be replaced by

Line ____________ should be replaced by

7

2.4) JButton (3 points)

Java has many built-in classes. Among them, there is one called JButton, which creates a

button like those you see on web pages; another is Dimension, which is used to represent the

width and height of user interface elements such as buttons; yet another is Color, which

represents the colors that are displayed on screen.

Below are extracts from the public APIs for those classes.

JButton

JButton() Creates a button with no text
JButton(String text) Creates a button with the specified text
void setPreferredSize(Dimension d) Sets the size of the button to d
void setBackground(Color c) Sets the background color of the button to c

Dimension

Dimension() Creates an instance of Dimension

representing a height of 0 and a width of 0
Dimension(int width, int height) Creates an instance of Dimension representing

specified height and width

Color

Color(int red, int green, int blue) Creates an instance of Color representing a

color with specified red, green, and blue

components

Suppose we have a JButton which has been declared as follows:

JButton submitButton;

We would like to make submitButton refer to a blue button with width 80 and height 40,

with the text “Submit” inside it. Write code that does this, using the API documentation that we

have provided above. (Your code will run in the same scope as the above declaration.)

Recall that blue is represented by 0 red, 0 green and 255 blue.

// TODO – write your code here

8

3) SOARTING (13 points total)

3.1) True or false? Mergesort is the fastest way to sort any array, regardless of the data within it.

(1 point)

3.2) If, on average, it takes 10 seconds to sort an array of length 10,000 using insertion sort, how

long will it take to sort an array of length 20,000 using the same algorithm (all other things being

equal)? (2 points)

3.3) Hors d’œuvre (4 points)

Assume we are using selection sort on the character array

char[] name = {'b','e','n','e','d','i','c','t'};

(where we sort the characters in alphabetical order). What is the state of name after each step

of the selection sort algorithm? Fill in the table below, using as many rows as necessary to

complete the selection sort algorithm.

name[0] name[1] name[2] name[3] name[4] name[5] name[6] name[7]

9

3.4) Appetizer (6 points)

Assume you have two Stacks, both of which contain ints in sorted order. Stack has the

following public API.

Stack() Creates a Stack
void push(int i) Push i to the top of the Stack
int pop() Pop the element at the top of the Stack and return it
int peek() Return the element at the top of the Stack, without popping it
boolean isEmpty() Returns true if the Stack is empty

Write a public static method mergeStacks() that takes two sorted Stacks, and returns a

new Stack where the elements of the two Stacks are merged. The merging is to be done in

the same manner as you have seen with the mergesort of arrays, as illustrated below.

Stack stack1 Stack stack2 mergeStacks(stack1, stack2)

3

4

5

7

9

6

10

11

3

4

5

6

7

9

10

11

public static Stack mergeStacks(Stack stack1, Stack stack2) {

 // TODO – complete the body of this method

}

10

4) LINKED LISTS (13 points)

4.1) Main course (10 points)

Assume that we have defined the following classes.

public class Node {

 public int item;

 public Node next;

}

public class LinkedList {

 public Node first;

}

In the LinkedList class, write a public void method, delAlternate(), that removes

every other element in the list. (If we give first the index 0, then only the elements with even

indices should remain in the list.) Be careful to cover all cases!

public void delAlternate() {

 // TODO – complete the body of this method

}

11

4.2) Dessert (3 points)

Assume that we have defined the following classes.

public class Student {

 private String name;

 private String college;

}

public class Course {

 private String name;

 private String department;

 private String semester;

}

You want to add another field to the Student class. It is called courses and it represents all

the courses that the Student has taken so far.

The most common thing that a Student does is take courses. Courses can be added and

dropped and Students tend to do both those things a lot, so the data structure needs to be

optimized for that.

Would you pick an array or linked list representation for courses? Explain why. Given your

choice, will it be simpler (in terms of the number of operations needed) to add a course, or will it

be simpler to drop a particular course in courses? Explain why.

You need not write any code: this is a conceptual question.

12

Extra page

This page intentionally left blank

13

Extra page

This page intentionally left blank

