
CIS 110 Spring 2014 — Introduction to Computer Programming
12 May 2014 — Final Exam

Name:

Recitation # (e.g., 201):

Pennkey (e.g., eeaton):

My signature below certifies that I have complied with the University of Pennsylvania’s Code of Aca-
demic Integrity in completing this examination.

Signature Date

Instructions:
• Do not open this exam until told by the proctor.

You will have exactly 120 minutes to finish it.
• Make sure your phone is turned OFF (not to

vibrate!) before the exam starts.
• Food, gum, and drink are strictly forbidden.
• You may not use your phone or open your bag

for any reason, including to retrieve or put away pens
or pencils, until you have left the exam room.

• This exam is closed-book, closed-notes, and
closed-computational devices.

• If you get stuck on a problem, it may be to your benefit
to move on to another question and come back later.

• All code must be written out in proper Java format,
including all curly braces and semicolons.

• Do not separate the pages. If a page becomes loose,
reattach it with the provided staplers.

• Staple all scratch paper to your exam. Do not take any
sheets of paper with you.

• If you require extra paper, please use the backs of the
exam pages or the extra pages provided at the end of
the exam. Clearly indicate on the question page
where the graders can find the remainder of your
work (e.g., “back of page” or “on extra sheet”).

• Use a pencil, or blue or black pen to complete the exam.
• If you have any questions, raise your hand and a proctor

will come to answer them.
• When you turn in your exam, you may be required to

show ID. If you forgot to bring your ID, talk to
an exam proctor immediately.

• We wish you the best of luck. Have a great summer!

Scores: [For instructor use only]

Question 0 1 pts
Question 1 10 pts
Question 2 8 pts
Question 3 12 pts
Question 4 9 pts
Question 5 15 pts
Question 6 11 pts
Question 7 10 pts
Question 8 8 pts
Total: 84 pts

CIS 110 Spring 2014 Final Exam Score: 1

TOY Reference Card

INSTRUCTION FORMATS

| | | ||
Format 1: | opcode | d | s | t | (0-6, A-B)
Format 2: | opcode | d | addr | (7-9, C-F)

ARITHMETIC and LOGICAL operations
1: add R[d] <- R[s] + R[t]
2: subtract R[d] <- R[s] - R[t]
3: and R[d] <- R[s] & R[t]
4: xor R[d] <- R[s] ^ R[t]
5: shift left R[d] <- R[s] << R[t]
6: shift right R[d] <- R[s] >> R[t]

TRANSFER between registers and memory
7: load address R[d] <- addr
8: load R[d] <- mem[addr]
9: store mem[addr] <- R[d]
A: load indirect R[d] <- mem[R[t]]
B: store indirect mem[R[t]] <- R[d]

CONTROL
0: halt halt
C: branch zero if (R[d] == 0) pc <- addr
D: branch positive if (R[d] > 0) pc <- addr
E: jump register pc <- R[d]
F: jump and link R[d] <- pc; pc <- addr

Register 0 always reads 0.
Loads from mem[FF] come from stdin.
Stores to mem[FF] go to stdout.

CIS 110 Spring 2014 Final Exam Score: 2

0.) THE EASY ONE (1 point total)
• Check to make certain that your exam has all 13 pages (excluding the cover sheet).

• Write your name, recitation number, and PennKey (username) on the front of the exam.

• Sign the certification that you comply with the Penn Academic Integrity Code.

1.) MULTIPLE CHOICE (10 points total)

1.1) (4 points) For each scenario below, choose whether it would be better to store the data in an
array, an ArrayList, or a LinkedList. Circle one answer for each scenario.

(a) The data rarely changes, and the program should use the least amount of memory possible:
array ArrayList LinkedList

(b) The amount of data will vary over time, but memory usage should always be minimal:
array ArrayList LinkedList

(c) The order of the data is constantly changing:
array ArrayList LinkedList

(d) The data is PennIDs of students, updated daily, and repeatedly searched using binary search:
array ArrayList LinkedList

1.2) (2 points) Which algorithm for sorting a large array of integers is the fastest?
(a) Insertion sort

(b) Merge sort

(c) Selection sort

(d) Bubble sort

(e) They are all equally fast

1.3) (2 points) Which of the following expressions is true? (Circle only one)
(Recall the following bitwise operators: & (and), | (or), ̂ (exclusive or).)

(a) (1 ˆ 0) & 1 == 1

(b) (0 & 1) == 1

(c) 1 ˆ (0 ˆ 1) == 1

(d) !((0 | 1) == 1)

(e) (1 | (1 ˆ (1 & 0))) != 1

1.4) (2 points) In TOY, the program counter represents:
(a) The number of available memory slots

(b) The number of lines of code in the program

(c) The amount of time the program has been running

(d) The memory address of the instruction that is currently being executed

(e) The number of CPU clock tics since the computer last rebooted

CIS 110 Spring 2014 Final Exam Score: 3

2.) METHOD OVERLOADING (8 points total)

Your start-up’s backers have hired a seasoned executive to run you company. He has proposed the
following API for the add() methods for a LinkedList of integers, but he has forgotten to consider
Java’s rules for method overloading:

(A) public void add(int x)
(B) public void add(int index, int x)
(C) public void add(int x, int index)
(D) public boolean add(int x, int index)
(E) public void add(int x, boolean duplicates)
(F) private boolean add(int x)

2.1) (5 points) Circle Yes or No to indicate whether each of the pairs of methods listed below could
both be included in the same Java API:

(A) and (B): Yes No

(A) and (F): Yes No

(B) and (C): Yes No

(C) and (D): Yes No

(D) and (E): Yes No

2.2) (3 points) After some debate, you decide to ignore your seasoned executive, and you condense
the API to the following:

public LinkedList() public int get(int index)
public void add(int x) public int size()
public void add(int x, int index) public void remove(int index)

One hallmark of good programming is building upon other methods that you’ve already written. Pro-
vide an implementation of add(int x) that relies solely on the other methods from the condensed
API above. Do not access any fields of the linked list directly.

public void add(int x) {

}

CIS 110 Spring 2014 Final Exam Score: 4

3.) LISTS AND METHODS AND COMPLEXITY, O(MY)! (12 points total)

For each list operation, circle the computational complexity for each data structure. Make certain that
you have circled one complexity in both columns within each row. The first row has been completed
for you. For ArrayLists, you may assume that the underlying array does not need to be resized. You
should also assume efficient implementations for all methods and data structures.

ArrayList DoublyLinkedList

Get the element at the head of the list O(1) O(n) O(1) O(n)

Construct an empty list O(1) O(n) O(1) O(n)

Get the size of the list O(1) O(n) O(1) O(n)

Add an element to the head of the list O(1) O(n) O(1) O(n)

Add an element to the tail of the list O(1) O(n) O(1) O(n)

Get the element at index i in the list O(1) O(n) O(1) O(n)

Remove the element at index 0 O(1) O(n) O(1) O(n)

CIS 110 Spring 2014 Final Exam Score: 5

4.) REMOVE(REMOVE(REMOVE(REMOVE(...)))) (9 points total)

Fill in the blanks in the partial recursive LinkedList implementation below to complete the class.
Each of your answers should be one line of code or less. You may assume that all other methods of
the class have already been completed.

public RecursiveLinkedListOfStrings {
private Node head;
private int size;

private class Node {
public String value;
public Node next;
public Node(String v, Node n) { value = v; next = n; }

}

... // other LinkedList methods would go here

/* Removes the first instance of the specified value from the list */
public void remove(String value) {

__ ; /* LINE A */
}

/* Removes the first node containing s from the sublist rooted at n.
* n may be null if we are at the end of the list.
* Returns the sublist, with the specified value removed
*/

private Node recursiveRemove(Node n, String s) {
if (n == null) { // reached the end of the list

return _______________________________________ ; /* LINE B */
} else if (n.value.equals(s)) { // found a matching node

size--;
return _______________________________________ ; /* LINE C */

}
n.next = recursiveRemove(n.next, s);
return n;

}
}

Write your answers in the spaces below:

(a) Line A:

(b) Line B:

(c) Line C:

CIS 110 Spring 2014 Final Exam Score: 6

5.) FUN-SIZE STACK PACK (15 points total)

Write a Stack class that conforms to the following API:

public class Stack
--
public Stack() // create an empty stack
public void push(String s) // push a new element on the stack
public String pop() // remove and return the top element

// return null if the stack is empty
public String top() // peek at the top element without removing it

// return null if empty
public boolean isEmpty() // return whether the stack is empty

Make certain that all of your methods take O(1) time. You do not need to comment your code, but
you may if you wish to clarify your implementation.

You must write your Stack class without defining a separate Node class. Instead you must build
it using an existing LinkedList class. In other words, your Stack object will contain a LinkedList
object as a field, and will store all data in this LinkedList. Your Stack class must rely on the
LinkedList’s methods, and must not create or manipulate individual nodes directly.

You should assume that you have a fully working LinkedList class that conforms to the API below.
If index is ever invalid (less than 0 or greater than size()), the LinkedList methods will throw an
InvalidArgumentException.

public class LinkedList

public LinkedList() // create an empty list
public void add(String s) // add s to the end of the list
public void add(String s, int index) // add s to the list at the specified index
public String get(int index) // get the element at the specified index
public String remove(int index) // remove the element at the specified index
public int size() // get the total number of elements

WRITE YOUR ANSWER ON THE NEXT PAGE

CIS 110 Spring 2014 Final Exam Score: 7

Fun-Size Stack Pack (Cont’d)

Write your Stack class on this page. If you have work on this page that is not part of your solution,
make sure to indicate your final answer very clearly. If it is not very clear which code is your
final answer (including if you give two different version), we will grade the code that is closest to the
top of the page.

CIS 110 Spring 2014 Final Exam Score: 8

6.) ODE TO TOY (11 points total)

Your friendly TAs wrote the following TOY program for fun during our end-of-semester staff picnic.
Unfortunately, they did a lousy job. They didn’t write proper comments or document what the
program does, and there seems to be a serious bug that makes program behave unpredictably. At
least the auto-generated assembly comments are correct.

10: 8AFF read R[A]
11: 8BFF read R[B]
12: 21AB R[1] <- R[A] - R[B]
13: 9BFF write R[B]
14: C121 if (R[1] == 0) goto 21
15: 7373 R[3] <- 0073
16: 4333 R[3] <- R[3] ^ R[3]
17: 93FF write R[3]
18: 1AAA R[A] <- R[A] + R[A]
19: 211B R[1] <- R[1] - R[B]
20: C014 if (R[0] == 0) goto 14
21: 8CFF read R[C]
22: 3CBC R[C] <- R[B] & R[C]
23: 9CFF write R[C]
24: 0000 halt

6.1) (2 points) In 20 words or less, describe the bug that makes program behave unpredictably.

6.2) (3 points) Correct the bug you described above. Write out the corrected line of code for each
line that changes. You do not need to write out the lines that do not change, and you do not need to
write out the auto-generated assembly comments (or any other comments).

CONTINUES ON NEXT PAGE

CIS 110 Spring 2014 Final Exam Score: 9

6.3) (6 points) Given the following input, print the output you would receive once the bug has been
fixed. If you believe the original program listing is correct, give the output you think it will produce.
You may write your answers in base 10 (decimal) or base 16 (hexadecimal).

(a) 1 1 8

(b) 6 2 8

(c) 5 2 9

CIS 110 Spring 2014 Final Exam Score: 10

7.) A RAY IF I DO, A RAY IF I DON’T (10 points total)

The following function takes a string and a length as arguments, and returns an array of the specified
length containing the string’s characters.

1 public static char[] arrayify(String str, int length) {
2 char[] chars = new char[length];
3 for (int i = 0; i < str.length(); i++)
4 chars[i] = str.charAt(i);
5 return chars;
6 }

For example, arrayify("110 is a ray of sun.", 20) would return the 20-element array:

{ '1', '1', '0', ' ', 'i', 's', ' ', 'a', ' ', 'r', 'a', 'y', ' ', 'o', 'f', ' ', 's', 'u', 'n', '.' }

7.1) (5 points) For each of the calls to arrayify in the left column, write the one letter from the
right column of the exception it would cause (or indicating there would be none):

arrayify("hi", 2);

arrayify("hi", 1);

arrayify("hi", 5);

arrayify(null, 0);

arrayify(null, 1);

(a) java.lang.ArrayIndexOutOfBoundsException

(b) java.lang.NullPointerException

(c) java.lang.IllegalArgumentException

(d) This statement will not cause an
exception.

7.2) (5 points) Write a version of arrayify() that returns null instead of throwing exceptions.
The return value should match the version of arrayify() above, except when an exception would have
been thrown. If your implementation reuses lines of code that already appear above, write “Line X”
instead of rewriting that line of code. For instance, write “Line 5” instead of “return chars;”

public static char[] arrayify(String str, int length) {

}

CIS 110 Spring 2014 Final Exam Score: 11

8.) BAIT AND SWITCH (8 points total)

The following code models fishers who fish for fish in the sea. They aren’t very good though, and
sometimes they hook each other instead. This code is completely correct (and tested), except for one
line in the Fish class. Sadly, the fishers aren’t much better at programming than they are at fishing.

public interface Catchable {
public void rename(String name);

}

public class Fish implements Catchable {
private String name;

public Fish(String name) { rename(name); }
public void rename(String name) { name = name; }
public String toString() { return name; }

}

public class Fisher implements Catchable {
private String name;

public Fisher(String name) { this.name = name; }
public void rename(String name) { /* do nothing */ }
public String toString() { return name; }

public Catchable fish(Catchable[] fish) {
int randomFish = (int) (fish.length * Math.random());
if (randomFish < fish.length - 1) {

System.out.println(name + " caught " + fish[randomFish]);
return fish[randomFish];

} else {
System.out.println(name + " caught nothing");
return null;

}
}

}

8.1) (3 points) Find and correct the single line of code in the Fish class that behaves incorrectly.
You only need to write the corrected line of code below; you do not need to write any of the surrounding
code or explain the error.

CONTINUES ON THE NEXT PAGE

CIS 110 Spring 2014 Final Exam Score: 12

Bait and Switch (Cont’d)

8.2) (5 points) The following program models a “catch-and-release” fishing expedition. Anything
that is caught is immediately released and can be caught again. Fill in the blanks below in the
program’s output. Assume the random values that are assigned to the variable randomFish are, in
order: 3, 2, 3, 4, 1, 2, 3, 4, 4, 1.

public class BaitAndSwitch {
public static void main(String[] args) {

Fisher carrie = new Fisher("Carrie");
Fisher rod = new Fisher("Rod");

Fish wanda = new Fish("Wanda");
Fish stanley = new Fish("Stanley");
Fish herring = new Fish("This is a red herring");

Catchable[] sea = { carrie, rod, wanda, stanley, herring };
String[] fishNames = { "Bernie", "Luke", "Leia", "Han", "Debbie" };

for (int i = 0; i < 5; i++) {
Catchable f = carrie.fish(sea);
if (f != null) // Carrie likes to name her fish

f.rename(fishNames[i]);
rod.fish(sea);

}
}

}

caught

caught

caught

caught

caught

caught

caught

caught

caught

caught

Have a great summer!

CIS 110 Spring 2014 Final Exam Score: 13

[Scrap Paper: This Page Intentionally Blank]

