
CIS 110 Fall 2014 Final Exam 1

CIS 110 Fall 2014 — Introduction to Computer Programming
17 Dec 2014 — Final Exam

Answer Key

0.) THE EASY ONE (1 point total)
Check cover sheet for name, recitation #, PennKey, and signature.

1.) I CHOOSE THEREFORE I AM (10 points total)

For each question below, circle the correct answer(s):

1.1) (2 points) Which data structure(s) give(s) the fastest access to the median element (e.g. 5th-highest
element out of 11)?

(a) binary search tree
(assume balanced)

(b) stack

(c) queue

(d) array

(e) graph

(f) sorted array

(g) None of the above

1.2) (2 points) Which of the following are correct method signatures for the toString() method?

(a) public void toString()

(b) public void toString(String s)

(c) public String toString()

(d) public String toString(String s)

(e) public static void toString()

(f) public static void toString(String s)

(g) public static String toString()

(h) public static String toString(String s)

(i) None of the above

1.3) (2 points) What memory address comes ten words after memory address 0x15 in TOY?
Your answer: 0x1F

1.4) (2 points) Before covering objects, we insisted that every method be public static because:

(a) That is the only way one method can call another method.

(b) You can only use non-static method if you have global (instance) variables.

(c) main() is a static function and can only make calls to other static method.

(d) You can’t call static method without instantiating an object first.

(e) None of the above.

1.5) (2 points) The implementation of a well-written recursive method will always involve:

(a) A while loop

(b) A for loop

(c) A conditional

(d) A global variable

(e) A base case

(f) A print statement

(g) None of the above



CIS 110 Fall 2014 Final Exam 2

2.) TO ERR IS HUMAN. TO COMPLAIN IS JAVA (10 points total)
For each of the run-time exceptions below, write a sequence of at most two simple Java statements
that, if contained in a main() function, will always trigger the exception.

2.1) (2 points) ArrayIndexOutOfBoundsException
int[] arr = new int[1];
int y = arr[4];

2.2) (2 points) NullPointerException
String s = null;
System.out.println(s.length());

2.3) (2 points) StringIndexOutOfBoundsException
String s = "abc";
char c = s.charAt(5);

2.4) (2 points) NumberFormatException
String s = "1.0";
int i = Integer.parseInt(s);

2.5) (2 points) ArithmeticException
int i = 1 / 0;



CIS 110 Fall 2014 Final Exam 3

3.) EXCEPTIONALLY BAD MAZES (12 points total)
Instead of reading in a .maze file, you would like to create a Maze object from an array of Vertex
objects (none of which contain any edges yet), and an adjacency matrix adj. An adjacency matrix
is a 2-D boolean array where the value at row i and column j is true (T) if there is an edge from
vertex i to vertex j, and false (F) otherwise. For exampleF T F

F F T
F F T


indicates there are edges from vertex 0 to vertex 1, from vertex 1 to vertex 2, and from vertex 2 to
itself.

In the code below, fill in the blanks to complete the new Maze constructor. We have written everything
that calls Vertex methods for you, so you shouldn’t need to remember any details of Vertex or Maze.
The line numbers are for reference and are not part of the code.

1: public class Maze {
2: private Vertex[] rooms;
3:
4: public Maze(Vertex[] rooms, boolean[][] adj) {
5: this.rooms = rooms;
6:
7: for (int i = 0; i < rooms.length; i++)
8: if (!rooms[i].getAdjacent())
9: throw new RuntimeException("Vertex " + i +

10: " already contains outgoing edges.");
11:
12: int numRows = Math.max(rooms.length, adj.length);
13:
14: for (int row = 0; row < numRows; row++) {
15: int numCols = Math.max(rooms.length, adj[row].length);
16:
17: for (int col = 0; col < numCols; col++)
18:
19: if (adj[row][col])
20:
21: rooms[row].addEdge(rooms[col]);
22: }
22: }
23:
24: // ... (imagine the rest of the Maze class is here)
25: }



CIS 110 Fall 2014 Final Exam 4

4.) EXCEPTIONALLY BAD MAZES II (12 points total)
When you test your new constructor in the previous question with a variety of inputs, you start seeing
runtime errors. For each of the errors below, describe in 20 words or less what could have caused the
error. If there is more than one possible cause, list them all. The first one has been completed for you.

(a) NullPointerException at line 7
rooms is null

(b) NullPointerException at line 8
rooms[i] is null

(c) NullPointerException at line 12
adj is null

(d) NullPointerException at line 15
adj[row] is null

(e) ArrayIndexOutOfBoundsException at line 15
adj does not have enough rows

(f) ArrayIndexOutOfBoundsException at line 19
adj[row] does not have enough columns

(g) ArrayIndexOutOfBoundsException at line 21
adj has too many rows or adj[col] has too many columns



CIS 110 Fall 2014 Final Exam 5

5.) IMPLEMENTING INTERFACES OF INTEGERS (8 points total)
Write a class IntegerBox that implements the SwappableInteger interface below. SwappableInteger
defines a integer type whose values can be easily swapped with each other. We provide the skeleton of
IntegerBox for you. You only need to fill in the method implementations. You do not need
to perform any error checking or write any comments. Your code should be short and simple.
interface SwappableInteger {

public void swap(SwappableInteger si); // swaps values with si
public void setValue(int val); // set value
public int getValue(); // get value
public String toString(); // returns string representation

}

class IntegerBox implements SwappableInteger {
private int val;
public IntegerBox(int val) { this.val = val; }
public IntegerBox(String val) { this.val = Integer.parseInt(val); }
public void swap(SwappableInteger si) {

int v = val;
setValue(si.getValue());
si.setValue(v);

}

public void setValue(int val) { this.val = val; }
public int getValue() { return val; }
public String toString() { return "" + val; }

}



CIS 110 Fall 2014 Final Exam 6

6.) A IS FOR ARVIND, B IS FOR BENEDICT (30 points total)
The code on the following page relies on your IntegerBox class from the previous question. (Assume
that your code works correctly.) When the program B is run with no arguments, each point marked
“// Point XX” in the code below will be reached exactly once. Fill in the table below with the order
in which the points are reached and the value of each listed variable at that point (immediately after
the preceding line is executed). If any variable is not in scope, write N/A. The first row is filled in
for you. You may yank out the code page, and staple it to the back of your exam when you turn it in.

Point a b this.a this.b B.a

M1 2 1 N/A N/A 2

M2 3 1 N/A N/A 2

B1 3 1 2 4 2

B2 1 3 2 4 2

B3 1 3 4 2 4

B4 1 2 4 3 4

AA 4 3 7 6 4

A2 4 6 7 3 4

A3 7 6 4 3 7

B4 1 2 7 6 7

M3 1 2 N/A N/A 7

THE CODE YOU NEED TO TRACE IS ON THE NEXT PAGE



CIS 110 Fall 2014 Final Exam 7

A is for Arvind, B is for Benedict (Cont’d)
Fill in the table on the previous page based on this code:
public class A {

public SwappableInteger b = new IntegerBox(6);
public SwappableInteger a = new IntegerBox(7);

public A(SwappableInteger b, SwappableInteger a) {
// Point A1

this.b.swap(b);
// Point A2

this.a.swap(a);
// Point A3

}
}

public class B {
public SwappableInteger b = new IntegerBox(4);
public static SwappableInteger a = new IntegerBox(5);

public B(SwappableInteger b, SwappableInteger a) {
// Point B1

a.swap(b);
// Point B2

B.a.swap(this.b);
// Point B3

this.b.swap(b);
// Point B4

A ba = new A(this.b, B.a);
// Point B5

}

public static void main(String[] args) {
SwappableInteger b = new IntegerBox(1);
a = new IntegerBox(2);
// Point M1

SwappableInteger a = new IntegerBox(3);
// Point M2

B ba = new B(b, a);
// Point M3

}
}



CIS 110 Fall 2014 Final Exam 8

7.) WHAT A TREE-EET! (30 points total)

root of a tree

not a tree

not a tree

Recall that a graph vertex is the root of a tree if none of the paths leaving it loop back on themselves.
Your job is to write a method to tell if a graph vertex is the root of a tree, i.e. if there is at most one
path from there to any other vertex.

The ListNode class below represents a linked lists of vertices similar to the one from your Maze assign-
ment. The GraphVertex class represents a vertex in a graph with a linked list of edges leaving it, just
like your Maze assignment. Each vertex stores a value and has a boolean variable mark for internal
use by the class’s methods. (You may do whatever you like with mark.) The allGraphVertices
variable is a linked list of every GraphVertex that has been created in your program.

Write a public method isTreeRoot that takes no arguments and returns true if the GraphVertex
it is called on is the root of a tree (there is at most one path from it to every other vertex), and false
otherwise.

class ListNode {
public GraphVertex graphVertex;
public ListNode next;

}

public class GraphVertex {
private static ListNode allGraphVertices;
private int value;
private boolean mark;
private ListNode edges;

public boolean isTreeRoot() {
// clear all marks
for (ListNode n = allGraphVertices; n != null; n = n.next)

n.graphVertex.mark = false;

return dfsTreeRoot();
}

private boolean dfsTreeRoot() {
if (mark) return false;

mark = true;
for (ListNode n = edges; n != null; n = n.next)

if (!n.graphVertex.dfsTreeRoot()) return false;
return true;

}
}


