
CIS 110 — Introduction to Computer Programming

12 February 2013 — Midterm

Name:

Recitation # (e.g. 201):

Pennkey (e.g. bjbrown):

My signature below certifies that I have complied with the University of Pennsylvania’s Code
of Academic Integrity in completing this examination.

Signature Date

Scores:

1 1

2 10

3 14

4 20

5 20

6 25

Total: 90



CIS 110 1

CIS 110 Exam Instructions

• You have 120 minutes to finish this exam. Time will begin when called by a proctor and end
precisely 120 minutes after that time. If you continue writing after the time is called, you
will receive a zero for the exam.

• Make sure your phone is turned off before the exam starts. If it vibrates or rings
during the exam, you will receive a substantial penalty.

• Food and drink are strictly forbidden, including water and gum.

• You may not use your phone or open your bag for any reason, including to retrieve or put
away pens or pencils, until you have left the exam room.

• This exam is closed-book, closed-notes, and closed-computational devices. Except where noted,
code included in the questions is correct and you may use it as a reference for Java syntax.

• If you get stuck part way through a problem, it may be to your advantage to go on to another
problem and come back later if you have time.

• All code must be written out as normal, including all curly braces and semicolons, unless the
question states otherwise.

• Do not separate the pages of the exam. If a page becomes loose, write your name on it and
use the provided staplers to reattach the sheet when you turn in your exam so that we don’t
lose it. We reserve the right not to grade any answers on loose sheets of paper.

• Turn in all scratch paper that you use during the exam. Do not take any sheets of paper with
you or leave them behind.

• If you require extra paper, please use the backs of the exam pages or the extra sheet(s) of
paper provided at the end of the exam. Clearly indicate on the question page where the
graders can find the remainder of your work (e.g. ”back of page” or ”on extra sheet”). Staple
an extra sheets you use to the back of your exam when you turn it in using the provided
staplers.

• Use a pencil, or blue or black pen to complete the exam. All other colors are reserved for
grading. If you do not have an appropriate writing utensil, raise your hand, and we will give
you a pencil.

• If you have any questions, raise your hand and an exam proctor will come to answer them.

• When you turn in your exam, you may be required to show ID. If you forgot to bring your
ID, talk to an exam proctor immediately.

Good luck and have fun!



CIS 110 2

Miscellaneous

1. (1 points)

(a) Write your name, recitation number, and PennKey (username) on the front of the exam.

(b) Sign the certification that you comply with the Penn Academic Integrity Code

Truth or Dare

2. (10 points) For each of the following boolean expressions, state whether it is always true

(T), always false (F), sometimes true and sometimes false/not enough information to tell (S),
will result in a compiler error (CE), or will result in a run-time exception (RE). Assume there are
no rounding errors and the variables x and y are ints.

(a) Double.parseDouble(3.0) == 3.0

(b) 3 / 2 == 1.5

(c) 2 * x / 2 == x

(d) 2(3) == 6

(e) 1 / 0 == 1.0 / 0.0

(f) Math.sqrt(x) * Math.sqrt(x) == x

(g) x - Math.abs(x - y) != y

(h) 1.0 + 2.0 == 3.0

(i) Double.parseDouble("3") == 3.0

(j) x - y <= x



CIS 110 3

Bugs Bunny

3. (14 points) Identify 7 bugs in the program below that will prevent it from compiling or
running. For each bug, give the line number and corrected line of code. Write your answers on the
following page.

Since this program is loony anyway, we will accept any reasonable fix that allows the program
to compile and run without error. You do not need to worry about the program’s purpose.

0 public class LittleBunny() {

1 public static void main(String args) {

2 int input = args[0];

3 if (input < 1)

4 return;

5 double arr = new double[input];

6 int i;

7 for (int j = 0; j <= arr.length; j += 1) {

8 i = (i + j) % arr.length;

9 arr[j] = foofoo(i, j);

10 System.out.println("" + arr[j]);

11 }

12 }

13

14 public static String foofoo(int i, int j) {

15 if (i < j)

16 return "a";

17 if (i > j)

18 return "b";

19 }

20 }

Write your answers in the spaces on the following page.



CIS 110 4

Bugs Bunny (Cont’d)

Bug 1:

Bug 2:

Bug 3:

Bug 4:

Bug 5:

Bug 6:

Bug 7:



CIS 110 5

A Square Meal

4. (20 points) Each of the four figures below can be created by calling a recursive function
recursive(3, 0.5, 0.5, 0.25) whose arguments are the recursive depth, x and y positions, and
size. In each case, you can implement the function by reordering the six lines of code given below.
Assume the drawSquare() function exists and draws a gray square with a black outline.

For each of the four figures, put the six lines of code in the correct order to generate the figure.
You only need to give the numbers of each line; you do not need to rewrite them.

public static void recursive(int n, double x, double y, double sz) {
1: drawSquare(x, y, sz)

2: recursive(n - 1, x - sz, y - sz, sz / 2) // lower left

3: recursive(n - 1, x - sz, y + sz, sz / 2) // upper left

4: if (n == 0) return;

5: recursive(n - 1, x + sz, y - sz, sz / 2) // lower right

6: recursive(n - 1, x + sz, y + sz, sz / 2) // upper right

}

Line 1:

Line 2:

Line 3:

Line 4:

Line 5:

Line 6:

Line 1:

Line 2:

Line 3:

Line 4:

Line 5:

Line 6:



CIS 110 6

A Square Meal (Cont’d)
Rearrange these six lines of code so they draw each of the following figures:

public static void recursive(int n, double x, double y, double sz) {
1: drawSquare(x, y, sz)

2: recursive(n - 1, x - sz, y - sz, sz / 2) // lower left

3: recursive(n - 1, x - sz, y + sz, sz / 2) // upper left

4: if (n == 0) return;

5: recursive(n - 1, x + sz, y - sz, sz / 2) // lower right

6: recursive(n - 1, x + sz, y + sz, sz / 2) // upper right

}

Line 1:

Line 2:

Line 3:

Line 4:

Line 5:

Line 6:

Line 1:

Line 2:

Line 3:

Line 4:

Line 5:

Line 6:



CIS 110 7

Recess

5. (20 points) Read the code below, then answer the questions on the next page:

public class Playground {

public static void main(String[] args) {

int n = Integer.parseInt(args[0]);

if (n == 1) {

int d = slide(Integer.parseInt(args[1]),

Integer.parseInt(args[2]),

Integer.parseInt(args[3]));

System.out.println((d + "-") + (d + 5 + "-") +

((d + 12) + "-") + d + ("-" + 83));

} else if (n == 2) {

double d = monkeybars(Integer.parseInt(args[1]));

System.out.println(d);

} else if (n == 3) {

String d = tetherball();

System.out.println(d);

}

}

public static int slide(int a, int b, int c) {

if (b < 1) return (a + c);

a *= 2;

return slide(a, b-1, c);

}

public static int monkeybars(int a) {

while (a < 81) a += 2;

return a;

}

public static String tetherball() {

String[] arr = {"M", "U", "2", "R", "Y"};

return arr[4] + arr[1] + arr[Integer.parseInt(arr[2]) -

Integer.parseInt(arr[2])];

}

}



CIS 110 8

Recess (Cont’d)

(a) What does the command “java Playground 1 2 5 3” print? Circle your answer.

(b) What does the command “java Playground 2 2” print? Circle your answer.

(c) What does the command “java Playground 3” print? Circle your answer.

(d) Describe in 20 words or less what slide() computes. You may assume that a, b, and c

are all at least zero. Circle your answer.

(e) Describe in 20 words or less what monkeybars() doess. You may assume that a is at least
zero. Circle your answer.



CIS 110 9

What a Dupe

6. (25 points) This question consists of three parts on three pages. For each part, you only
need to write the prescribed function; you do not need to write the surrounding class. You also do
not need to write any comments.

(a) Write a function contains() that takes an integer x and an array of integers arr, and returns
true or false depending on whether or not arr contains the value x. You may assume that
arr contains at least one element.



CIS 110 10

What a Dupe (Cont’d)

(b) Write a function dupes() that accepts two arrays of integers and uses the contains() function
to compute and return the number of values that occur in both arrays. Your solution must
not be recursive. You may assume that each array contains at least one value, that no value
occurs more than once within either array, and that the contains() function is defined in
the same class as dupes().



CIS 110 11

What a Dupe (Cont’d)

(c) Write a recursive function, dupes2() that accepts two arrays of integers and an integer n.
dupes2(arr1, arr2, n) should do the same thing as dupes()— use the contains() func-
tion to compute and return the number of values that occur in both arr1 and arr2— except
that it should only consider values in entries n and higher of arr1. dupes2(arr1, arr2, 0)

should therefore return the same result as dupes(arr1, arr2).

dupes2() must not contain any loops and must not call dupes(). You may assume that each
array contains at least one value, that no value occurs more than once within either array,
and that the contains() function is defined in the same class as dupes2(). You may also
assume that dupes2() will only be called with a value of n that is at least 0.



CIS 110 12

Postscript (extra paper)



CIS 110 13

Postscript (extra paper)


