
CIS 110 Summer 2012 Midterm, 7 June 2012, Answer Key

Miscellaneous

1. (1 points)

(a) Write your name, recitation number, and PennKey (username) on the front of the exam.

(b) Sign the certification that you comply with the Penn Academic Integrity Code

Find the Bugs

2. (5 points) Identify five errors in the following sorting routine that prevent it from compiling.
The line numbers are included for your convenience and are not part of the program.

1: public static int selectionSort(int[] input) {

2: for (int i = 0; i < input.length; i++)

3: int minIndex = i;

4: for (int j = i; j < input.length; j++) {

5: if (input[j] < input[minIndex])

6: int minIndex = j;

7: }

8:

9: int temp = input[i];

10: input[i] = input[minIndex]

11: input[minIndex] = temp;

12: }

13:

14: return input[];

15: }

Bug 1: 1: should return int[]

Bug 2: 2: missing curly brace
Bug 3: 6: don’t redeclare myIndex

Bug 4: 10: missing semi-colon
Bug 5: 14: no [] after input

1



Types and Expressions

3. (6 points) Give the type and value of each of the following Java expressions. If an expression
will crash or will not compile, write Illegal under type and put an X in value. You must fill in
every entry. Entries left blank will be marked incorrect.

Expression Type Value

3 < 4 < 5 Illegal X

5 / 2 int 2

"5" + Math.max(3, 4) String "54"

(double) 2 / 4 double 0.5

(!!true) && (!!(!false)) boolean true

Integer.parseInt(2) Illegal X

2



Recursive Graphics

4. (13 points) Consider the following recursive function, then answer the questions on the fol-
lowing page. Assume that the helper function drawShadedStar() draws an eight-pointed, shaded
gray star of radius r that is outlined in black and centered on (x, y).

public static void starryNight(double x, double y, double r, boolean odd) {

// Select a random integer from the set [0, 1, 2, 3]

int randomInt = (int) (4 * Math.random());

double new_r = 0.5 * r;

double offset = 0.6 * r;

if (r < 0.02) return;

drawShadedStar(x, y, r);

if (randomInt % 2 == 0)

starryNight(x - offset, y - offset, new_r, !odd);

else if (randomInt / 2 == 0)

starryNight(x + offset, y + offset, new_r, !odd);

if (randomInt / 2 == 1)

starryNight(x + offset, y - offset, new_r, !odd);

else if (randomInt % 2 == 1)

starryNight(x - offset, y + offset, new_r, !odd);

}

3



Assume a client issues the call starryNight(0.5, 0.5, 0.25, true). For each figure below,
state that it is correct, or indicate what feature(s) of the figure make it incorrect. Each inccorect
figure has at most two problems.

recursion too deep correct

rotated, star sizes are
not consistent

rotated

rotated, big stars in
front of small ones

big stars in front of small
ones

star sizes are not consis-
tent

correct

rotated, recursion too
deep

rotated

4



Tracery

5. (15 points)
For each of the labeled points in the code fragment below, identify each of the assertions in the

table as being sometimes, always, or never true. Assume that bar is only called from within foo,
and that the values of all ints stay within the valid range for integers (i.e. no value will grow so
large that it will wrap around become negative, or vice cersa).

Abreviate sometimes with S, always with A, and never with N.

public static int foo(int x, int y, int z) {

x = x * x;

if (x < 0) y = y * y;

else y = y - 2 * y;

// POINT A

if (x < 0) z = y;

else y++;

// POINT B

if (z < 0) z = x;

if (x > y * y) {

// POINT C

return bar(y / 3, x + 1, z - 1);

} else {

// POINT D

return bar(y + 1, x, z - 1);

}

}

public static int bar(int x, int y, int z) {

if (z == 0) return 42;

x = x * 4;

// POINT E

return foo(x / 2, -y - Math.abs(x), z - 1);

}

x >= 0 y > x z < 0

A A S S

B A S S

C A N N

D A S N

E S S S

5



Partial Sums

6. (20 points) Write a function sumUpTo that takes a single argument N, reads in N integers
from standard input using StdIn.readInt(), and returns an integer array of length N where the
value at index i is the sum of the last i + 1 numbers read. For example, if you read in the values
1, 3, −1, 4, 2, you should produce and return an array with the values 2, 2 + 4, 2 + 4 + (−1),
2 + 4 + (−1) + 3, 2 + 4 + (−1) + 3 + 1, i.e. {2, 6, 5, 8, 9} . Any implementation that works
will receive a good grade, but for full credit your function should create only one array. You may
assume that N is at least 1 and that StdIn.readInt() always succeeds.

public static int[] sumUpTo(int N) {

int[] arr = new int[N];

for (int i = 0; i < N; i++)

arr[N - i - 1] = StdIn.readInt();

for (int i = 1; i < N; i++)

arr[i] = arr[i] + arr[i - 1];

return arr;

}

6


