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CIS 110 Final Instructions

You have 110 minutes to finish this exam. Time will begin when called by a proctor and end
precisely 110 minutes after that time. If you continue writing after the time is called, you
will receive a zero for the exam.

This exam is closed-book, closed-notes, and closed-computational devices. Except where noted,
you can assume that code included in the question is correct and use it as a reference for Java
syntax.

This exam is long. If you get stuck part way through a problem, it may be to your advantage
to go on to another problem and come back later if you have time.

When writing code, the only abbreviations you may use are for System.out.println, System.out.print,
and System.out.printf as follows:

System.out.println — S.O.PLN
System.out.print — S.0.P
System.out.printf — S.O.PF

Otherwise all code must be written out as normal, including all curly braces and semicolons.

Please do not separate the pages of the exam. If a page becomes loose, write your name on
it and use the provided staplers to reattach the sheet when you turn in your exam so that we
don’t lose it.

If you require extra paper, please use the backs of the exam pages or the extra sheet(s) of
paper provided at the end of the exam. Clearly indicate on the question page where the
graders can find the remainder of your work (e.g. ”back of page” or "on extra sheet”). Staple
an extra sheets you use to the back of your exam when you turn it in using the provided
staplers.

If you have any questions, please raise your hand and an exam proctor will come to answer
them.

When you turn in your exam, you will be required to show ID. If you forgot to bring your
ID, please talk to an exam proctor immediately.

Good luck, have fun!



INSTRUCTION FORMATS

Format 1: | opcode
Format 2: | opcode

TOY Reference Card

ARITHMETIC and LOGICAL operations

1:

o O W N

TRANSFER between registers and memory
R[d] <- addr

T:
8
9
A:
B
CONTROL

0:

C
D
E:
F

add

: subtract

: and

: Xor

: shift left
: shift right

load address

. load
: store

load indirect

: store indirect

halt

: branch zero
: branch positive

jump register

: jump and link

R[d]
R[d]
R[d]
R[d]
R[d]
R[d]

R[s]
R([s]

Rls] &

R[s]
R[s]
R[s]

+ RI[t]
- RI[t]
R[t]
-~ RI[t]
<< R[t]
>> R[t]

R[d] <- mem[addr]
mem[addr] <- R[d]
R[d] <- mem[R[t]]
mem[R[t]] <- R[d]

halt

if (R[d] == 0) pc <- addr
if (R[d] > 0) pc <- addr
pc <- R[d]

R[d] <- pc; pc <- addr

Register 0 always reads O.

Loads from mem[FF] come from stdin.
Stores to mem[FF] go to stdout.

(0-6, A-B)
(7-9, C-F)



Miscellaneous
1. (1 points)
(a) Write your name, recitation number, and PennKey (username) on the front of the exam.

(b) Sign the certification that you comply with the Penn Academic Integrity Code

Find the Bugs

2. (5 points) Give five bugs in the following code. The line numbers are included for your
convenience and are not part of the program. (Hint: Think about what the program is trying to
do to find bugs in the logic.)

int[]1 [] myarray = int[5][4];
int sum;
for (int j = 0; j < myarray.length; j++) {
for (int i = 0; j < myarray[0].length; i++) {
myarray[i][j] = 1 + j;
int sum = i + j;

}

System.out.println(sum);

© 00 NO O WN -

Bug 1:

Bug 2:

Bug 3:

Bug 4:

Bug 5:



Method Madness

3. (9 points) Consider the following program:
public class Madness {
public static int[] y = { 7, 3, 2 };
public static int X = 2;

public static void main(String[] args) {
int x = Integer.parselnt(args[0]);
X = mysterymethod(x, y);
System.out.println(x);
for (int i = 0; i < y.length; i++) {
System.out.println(y[il);

public static int mysterymethod(int y, int[] z)
for (int i = 0; i < z.length; i++)
z[i] += x;
return x - y;

}
(a) What will “java Madness 7” print out?

(b) What will “java Madness 3” print out?

(c) What will “java Madness 2” print out?



Why

4. (12 points) Consider the following class, then answer the questions on the following page:

public class Why {
private String question;
private String answer;

public Why() { answer = "Because."; }

public Why(String q) {
question = q;
answer = "Why not?";

public Why(String q, String a) {
question = q;
answer = a;

public String question() {
String q = "Why";
if (question.length() > 0)

q=q+ " " + question;
q=q + n?n;
return q;

public String answer()  {
return answer;

}

public String toString() {
return question() + "\n" + answer() + "\n";
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What will each of the following code snippets print? If the code will cause a runtime error, write
Exception.

(a)

Why w = new Why(Q);
System.out.println(w);

Why w = new Why("Why did the chicken cross the road?");

System.out.println(w);

Why w = new Why("Why did the chicken cross the road?",

System.out.println(w);

Why w = new Why(null, "");
System.out.println(w);

Why w = new Why("", null);
System.out.println(w);

Why w = new Why(null, null);
System.out.println(w);

"To get to the other side.");



5. (13 points)

TOY

Consider what happens when the following TOY program is executed by

pressing RUN with the program counter set to 10:

01:
02:
03:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:

0001
0010
0012
8101
co14
1331
9302
8202
2321
€320
91FF
1111
co14
0000

( 0000 0000 0000 0001 )
( 0000 0000 0001 0000 )
( 0000 0000 0001 0010 )
R[1] <- Mem[01]

if (R[0] == 0) pc <- 14
R[3] <- R[3] + R[1]
Mem[02] <- R[3]

R[2] <- Mem[02]

R[3] <- R[2] - RI[1]

if (R[3] == 0) pc <- 20
mem[FF] <- R[1]

R[1] <- R[1] + R[1]

if (R[0] == 0) pc <- 14
halt

(a) Describe, in 20 words or less, what the above program does:

(b) Describe, in 20 words or less, what the program would do if the instruction at memory address
11 were replaced with the following:

11:

8302

R[3] <- Mem[02]



Whiteboarding

6. (20 points) The list of names of students waiting for help during office hours is a good
example of a ring buffer. Students add their names to the end of the list, and TAs help students
from the front of the list. When the list reaches the end of the board, it wraps around. But
there is one wrinkle: students only get to have their name on the board at most once. Consider
the following class to implement this behavior, then answer the two questions on the following pages:

public class Whiteboarding {
private String[] rb; // the array backing the ring buffer

private int first; // index of the first valid element in the buffer
private int last; // index one past the last valid element in the buffer
private int size; // the number of elements currently in the buffer

private Whiteboarding() {} // forbid the default constructor

// Create a whiteboard that can hold capacity names

public Whiteboarding(int capacity) {
if (capacity <= 0) throw new RuntimeException("Invalid capacity.");
rb = new String[capacity];

¥

// return the number of names currently on the board
public int size() { return size; }

// return whether the board is empty/full
public boolean isEmpty() { return size == 0; }
public boolean isFull() { return size == rb.length; }

// Add name to the end of the queue if it is not
// already in the queue, and the queue is not full
public void enqueue(String name) { /* ... %/ }

// Delete and return the name from the front of the queue, or
// return null if the queue is empty
public String dequeue() { /* ... */ }

// Return the name from the front of the queue, or null if the queue
// is empty, but do not delete the element
public String peek() { /x ... */ }



(a) Implement the enqueue () method so that it behaves according to its comment. Make sure
the values of all instance variables are consistent with their comments when enqueue() re-
turns. (Hint: recall that if s and t are strings, then s.compareTo(t) will return 0 if the two
strings are the same.)

public void enqueue(String name) {



(b) What will the contents of the rb array be after the following sequence of statements? Indicate
which entries in the array correspond to first and last

Whiteboarding w = new Whiteboarding(5);
w.enqueue ("Dan") ;

w.enqueue ("Jeff") ;
w.enqueue ("Catherine");
w.enqueue ("Dan") ;
w.enqueue ("Rupi");
w.enqueue ("Kathryn") ;
w.enqueue ("Nate") ;
w.dequeue() ;
w.peek();
w.dequeue () ;
w.peek();

w.enqueue ("Kathryn") ;
w.enqueue ("Jeff") ;
w.enqueue ("Nate") ;

Your answer:
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Binary Search Trees

7. (30 points) A binary search tree (BST) is a linked data structure, where each node
contains a value and pointers to two other nodes, left and right. These nodes are referred to
as its children. Just as the next node of a linked list is itself the start of a linked list, the left
and right children of a BST node are themselves BSTs, called the left and right sub-trees. What
makes BSTs interesting is an additional requirement that the every value in the left sub-tree of a
node n must be less than the value stored in n, and every value stored in the right sub-tree of n
must be greater than or equal to the value stored in n. If the left or right sub-trees of n are empty,
then the left and/or right pointers will be null. Here are some examples of BST's:

Searching for a value v in a BST n is very efficient using a simple recursive method. If
n.value == v you're done. Otherwise, if v < n.value search the left sub-tree. Otherwise search
the right sub-tree. If n == null then the tree doesn’t contain v. Values can be added using a
similar recursive method. A value v should be added to the left or right sub-tree depending on
whether it is less than n.value or not. If that sub-tree is null, a new node containing the value v
should be appended there. The nice thing about BSTs is that, if your values are well distributed,
the size of the left and right sub-tree will be about equal and searching and insertion will be much
faster than in a linked list. (More complex data structures, such as red-black trees guarantee this

property.)

Consider the following BST class on the following page, then write the insert () and printReverseSorted ()
methods in the spaces provided.
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public interface Comparable {
// return O if this equal other
// -1 if this is less than other
// 1 if this is greater than other
int compareTo(Object other);

public class BST {
private Comparable value;
private BST left;
private BST right;

public BST(Comparable v) { value = v; }
// return true if this tree contains v

// or false if it doesn’t
public boolean find(Comparable v) {

VE T V)
int cmp = v.compareTo(value);
if (cmp == 0) return true;

else if (cmp < 0) {
if (left != null) return left.find(v);
else return false;

} else {
if (right != null) return right.find(v);
else return false;

// insert v into this tree

public void insert(Comparable v) {
VA V)

}

// print the value of this node
public void printValue() { System.out.println(value); }

// print the tree contents in sorted order, one value per line
public void printSorted() {

VE T V)
}

// print the tree contents in reverse sorted order, one value per line
public void printReverseSorted() {

VAT V4
3
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(a) Implement the recursive insert () method as described in the problem description.

public void insert(Comparable v) {
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(b) Implement the recursive printReverseSorted() method to print all the values in the tree in
reversesorted order, as described in the problem description.

public void printReverseSorted() {
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Postscript (extra paper)
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Postscript (extra paper)
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