CIS 110-001 1

CIS 110-001 Fall 2012 Midterm, 7 June 2012, Answer Key

Miscellaneous
1. (1 points)
(a) Write your name, recitation number, and PennKey (username) on the front of the exam.

(b) Sign the certification that you comply with the Penn Academic Integrity Code

Money, money, money, money, money ...

2. (4 points) Consider the following recursive function:
public static double compoundInterest(double balance, int months, double rate) {
if (months <= 0) return balance;

balance = balance * rate;
return compoundInterest(balance, months - 1, rate);

) Is this function tail recursive (circle your answer)? YES
) How many times will compoundInterest (0, 12, 1.05) callitself recursively? 12 times
(c) What value will compoundInterest(0, 12, 1.05) return? 0
)

Will the following non-recursive function produce the same or different results from the re-
cursive function above? Circle your answer. DIFFERENT

public static double iterativeInterest(double balance, int months, double rate) {
for (int i = months; i >= 0; i--)
balance = balance * rate;
return balance;

3

CIS 110-001 2

Cabin

3. (7 points) Given the following class, answer the questions below and on the next page:

public class Fever {
public static int restless(int[] arr) {
int sum = O;
for (int i = 0; i < arr.length; i++)

sum = sum + arrl[il;

return sum / arr.length;

}

public static void main(String[] args) {
int[] intArgs = new int[args.length];
for (int i = 0; i < args.length; i++)

intArgs[i] = Integer.parselnt(args[i]);

System.out.println(restless(intArgs));

}
}

(a) Circle the statements below that are true

1.
ii.
iii.
iv.
V.

vi.

will not compile because the for loops do not have curly braces;

will not compile because restless() is called inside System.out.println;

intArgs[] is args[] converted into an integer array; X

may crash with an ArrayIndexOutOfBounds error when run;

does not print anything because the intArgs[] array is different from the arr[] array ;

prints the approximate average of the command line arguments. X

(b) Assuming that any errors you identified above are corrected, what will the program print out
in each of the following cases? We will consider your answer correct as long as it shows you
understand what the program will print out.

i.

ii.

iii.

1v.

% java Fever
java.lang.ArithmeticException: / by zero

% java Fever 1.3 2.5 7.1
java.lang.NumberFormatException: For input string: "1.3"

% java Fever 1 2 5
2

% java Fever hello world
java.lang.NumberFormatException: For input string: "1.3"

CIS 110-001 3

Find the Bugs

4. (8 points) Identify eight errors in the following program that prevent it from compiling
or from running and show how to correct them. Write your answers in the space provided on the
next page. The line numbers are for your convenience and are not part of the program.

1: public class Foo() {

2 public static int main(Stringl[] args) {

3 int rows = args[0];

4: drawSomething(Rows) ;

5 double hyp = computeSomething(rows);

6 System.out.println("length(hypotenuse)" = hyp);
7 }

8: public static void drawSomething(int rows) {
9: for (i = 0; i < rows; i++) {

10: for (j =0; j<i+1; j=3j+1)

11: System.out.print ("*");

12: System.out.println();

13: }

14: }

156: public static double computeSomething(int leg) {

16: int sqrt2 = Math.sqrt(2);
17: return sqrt2 * leg;
18: }
19: }
Bug 1: 1: class Foo {
Bug 2: 2: public static void main(String[] args)
Bug 3: 3: int rows = Integer.parselnt(args[0])
Bug 4: 4: drawSomething(rows) // lower-case r
Bug 5: 6: System.out.println("length(hypotenuse) = " + hyp);
Bug 6: 9: for (int i = 0; i < rows; i++) {

Bug 7: 10: for (int j =0; j<i+1; j=3j+ 1)
Bug 8: 16: double sqrt2 = Math.sqrt(2);

CIS 110-001 4

Partial Sums

5. (15 points) The median, or middle value, of a list of numbers is extremely useful in a
variety of computer and statistical algorithms. But it is notoriously slow to compute relative to the
number of times it needs to be computed. Often, it is better to settle for an approximation of the
median than to calculate it exactly. One of the simplest approximations is to pick three random
elements, and calculate the median of those three.

Write a function threeMedian that takes a single argument N, reads in N doubles from standard
input using StdIn.readDouble(), and returns the median of three randomly chosen elements.
Assume that N is always at least three, and that all calls to StdIn.readDouble () succeed without
error. Use Math.random() to pick the three random elements (recall that Math.random() returns
a random number between 0 and 1, but never exactly 1). Do not write the code for the class that
contains threeMedian, only write the function itself. You do not need to comment your code.

We awarded 14 points on this problem for a completely correct answer, and 15 for a correct and
elegant answer along the lines of the second solution below.

public static double threeMedian(int N) {
double[] arr = new doublel[N];

for (int i = 0; i < N; i++)

arr[i] = StdIn.readDouble();
double a = arr[(int) (N * Math.random())];
double b = arr[(int) (N * Math.random())];
double ¢ = arr[(int) (N * Math.random())];

if (a <= b && b <= c¢) return b;

else if (c <= b && b <= a) return b;
else if (b <= a && a <= c¢) return a;
else if (c <= a && a <= b) return a;
else return c;

public static double threeMedian(int N) {
double[] arr = new double[N];

for (int i = 0; i < N; i++)

arr[i] = StdIn.readDouble();
double a = arr[(int) (N * Math.random())];
double b = arr[(int) (N * Math.random())];

double ¢ = arr[(int) (N * Math.random())];

double min = Math.min(Math.min(a, b), c);
double max = Math.max(Math.max(a, b), c);
return a + b + ¢ - min - max;

CIS 110-001 5

Tracery

6. (15 points)

For each of the labeled points in the code fragment below, identify each of the assertions in the
table as being sometimes, always, or never true. Assume that bar is only called from within foo,
and that the values of all ints stay within the valid range for integers (i.e. no value will grow so
large that it will wrap around become negative, or vice cersa).

Abreviate sometimes with S, always with A, and never with N.

public static void foo(int x, int y, int z) {
if (x >y && y <= 0)
y = Math.abs(y - x) + 1;
else if (x < y)
z = Math.abs(z) + 1;

else x>0 x>y z >y
x=y - 1;
A S N S
// Point A
if (z >0 1 B A A N
z = Xx;
Xx=y*xy+ 2 C S N N
// Point B
} else {
z = x; D S S N
z = bar(y, Math.abs(x), z * z);
// Point C E q g S
}
if (y == x)
y=s
// Point D

}

public static int bar(int z, int x, int y) {
for (int i = 0; i < x; i++)
Y=Yy - X

// Point E

return z + y;

}

