
CIS 110: Introduction to 
computer programming 

Lecture 25 

Inheritance and polymorphism 

(§ 9) 

 

12/3/2011 CIS 110 (11fa) - University of Pennsylvania 1 



Outline 

• Inheritance 

• Polymorphism 

• Interfaces 

12/3/2011 CIS 110 (11fa) - University of Pennsylvania 2 



Inheritance 

12/3/2011 CIS 110 (11fa) - University of Pennsylvania 3 



Example: student and faculty records 

• Consider parsing a file of student/faculty 
records. 

12/3/2011 CIS 110 (11fa) - University of Pennsylvania 4 

alur,faculty,35,Levine 609,professor 
susan,student,18,3.9,junior 
zives,faculty,32,Levine 
566,associate 
lee,student,20,3.5,senior 
nenkova,student,21,4.0,freshman 



The Student class 

public class Student { 
  private String username; 
  private int age; 
  private double gpa; 
  private String status; 
 
  public Student(String username, int age, double gpa, String status) { 
    this.username = username; 
    this.age = age; 
    this.gpa = gpa; 
    this.status = status; 
  } 
 
  public String getUsername() { return username; } 
  public int getAge() { return age; } 
  public double getGPA()  { return gpa; } 
  public String getStatus() { return status; } 
} 

12/3/2011 5 CIS 110 (11fa) - University of Pennsylvania 



The Faculty class 

public class Faculty { 
  private String username; 
  private int age; 
  private String office; 
  private String status; 
 
  public Faculty(String username, int age, String office, String status) { 
    this.username = username; 
    this.age = age; 
    this.office = office; 
    this.status = status; 
  } 
 
  public String getUsername() { return username; } 
  public int getAge() { return age; } 
  public String getOffice() { return office; } 
  public String getStatus() { return status; } 
} 

12/3/2011 6 CIS 110 (11fa) - University of Pennsylvania 



Class redundancy 

• Student and faculty share fields and methods! 

– username/age, getUsername, getAge 

• How do we factor out class redundancy? 

– Insight: a student and a faculty are related 
somehow… 

12/3/2011 CIS 110 (11fa) - University of Pennsylvania 7 



The Person class 

public class Employee { 

  // For simplicity's sake, let's just consider methods... 

  public int getAge() { return 20; } 

  public String getUsername() { return "username"; } 

} 

12/3/2011 8 CIS 110 (11fa) - University of Pennsylvania 



Extending classes - inheritance 

• We can extend the Person class to inherit its 
two methods. 

12/3/2011 CIS 110 (11fa) - University of Pennsylvania 9 

public class Student extends Employee { /** no impl yet */ } 

• Now we can call methods of the Employee 
class on Student objects.  

Student s = /* ... */; 
s.getUsername(); 
s.getAge(); 

A class can only extend at 
most one other class! 



Inheritance of terminology 

• We say that 
– Student extends Employee. 

– Student inherits Employee. 

– Student derives from Employee. 

– Student is a subclass of Employee. 

– Employee is the superclass of Student. 

– Employee is the parent class of Student. 

– Student is-a Employee. 

12/4/2011 CIS 110 (11fa) - University of Pennsylvania 10 

public class Employee { /* ... */ } 
public class Student extends Employee { /* ... */ } 

Employee 

Student 

Inheritance 
hierarchy 



Adding onto the Student class 

• We can call four methods on a Student object. 
– Two from Employee (getUsername(), getAge()). 

– Two from Student (getGPA(), getStatus()). 

 

• Inheritance allows for code sharing between classes. 
– Only one of the benefits! 

12/5/2011 CIS 110 (11fa) - University of Pennsylvania 11 

public class Student extends Employee { 
  public double getGPA()  { return 4.0; } 
  public String getStatus() { return "Junior"; } 
} 



Inheriting state as well as behavior 

• Let's add state back into the classes: 

12/5/2011 CIS 110 (11fa) - University of Pennsylvania 12 

public class Employee { 
  private String username; 
  private int age; 
  public Employee(String username, 
                  int age) { 
    this.username = username; 
    this.age = age; 
  } 
  public int getAge() { return age; } 
  public String getUsername() { 
    return username; 
  } 
} 
 

public class Student extends Employee { 
  private double gpa; 
  private String status; 
  public Student(double gpa, 
                 String status) { 
    this.gpa = gpa; 
    this.status = status; 
  } 
  public double getGPA() { return gpa; } 
  public String getStatus() { 
    return status; 
  } 
} 

BAD!! DOES NOT COMPILE! 



Setting up your superclass 

• We "set up our parent" by calling its 
constructor with super(…). 

12/5/2011 CIS 110 (11fa) - University of Pennsylvania 13 

public class Student extends Employee { 
  private double gpa; 
  private String status; 
  public Student(String username, int age, double gpa, String status) { 
    super(username, age); 
    this.gpa = gpa; 
    this.status = status; 
  } 
  public double getGPA()  { return gpa; } 
  public String getStatus() { return status; } 
} 



Accessing inherited members 

• Say I want to allow students to change their 
age (but not faculty). 

12/5/2011 CIS 110 (11fa) - University of Pennsylvania 14 

public class Student extends Employee { 
  // ... 
  public void setAge(int age) { this.age = age; } 
} 

BAD!! DOES NOT COMPILE! 

• Employee's age field is marked private and 
thus is not visible from Student. 



The protected modifier 

• public = visible to everyone 

• private = visible to only me (the class) 

• protected = visible to me + all my subclasses 

12/5/2011 CIS 110 (11fa) - University of Pennsylvania 15 

public class Employee { 
  // ... 
  protected int age; 
} 

• Allows flexibility at the cost of encapsulation…  



Overriding methods 

• Say we want to prepend the username with 
the status of the student. 

• Solution: let's override the behavior of 
getUsername in Student. 

12/5/2011 CIS 110 (11fa) - University of Pennsylvania 16 

public class Employee { 
  // ... 
  protected String username; 
} 

public class Student extends Employee { 
  // ... 
  public String getUsername() { return status + ":" + username; } 
} 



Invoking superclass methods 

• However, say we don't want to expose write access to 
username to Student. 

• Instead, let's invoke Employee's getUsername method 
directly instead of making username protected! 

12/5/2011 CIS 110 (11fa) - University of Pennsylvania 17 

public class Employee { 
  // ... 
  private String username; 
} 

public class Student extends Employee { 
  // ... 
  public String getUsername() { 
    return super.getUsername() + ":" + username; 
  } 
} 

"super" = invoke my 
parent's version of 
this method. 



The Object class 

• Object is the ultimate superclass for all other 
Java classes.  

12/5/2011 CIS 110 (11fa) - University of Pennsylvania 18 

Employee 

Student 

Object 

String Scanner 

… … 



Important methods of the object class 

// Returns the String representation of this object 

public String toString(); 

// Returns true if this object is equal to other 

public boolean equals(Object other); 

12/5/2011 CIS 110 (11fa) - University of Pennsylvania 19 

public class Employee { 
  public boolean equals(Object other) { 
    if (other instanceof Employee) { 
      Employee e = (Employee) other; 
      return username.equals(e.username) && 
             age == e.age; 
    } else { 
      return false; 
    } 
  } 
} 

instanceof = binary operator 
that is true if other is the same 
class or a subclass of Employee 



Polymorphism 

12/5/2011 CIS 110 (11fa) - University of Pennsylvania 20 



Student is-a Employee 

• When Student extends from Employee, we say 
Student is-a employee: 

– Student is a specialization of Employee. 

• Student has all the behavior and potentially more! 

– Student has all of the functionality of Employee. 

 

12/5/2011 CIS 110 (11fa) - University of Pennsylvania 21 



Polymorphism 

• Because a Student is-a Employee, this works! 
– Polymorphism: "many forms", the same code can be used 

with many types. 

12/5/2011 CIS 110 (11fa) - University of Pennsylvania 22 

Employee e = new Student(...); 

• Intuition: Student does everything Employee can do 
(by virtue of extends) so we can use a Student where 
ever an Employee is expected. 

The static type of e, 
i.e., the type e is 

declared with 

The dynamic type of e, 
i.e., the actual type of 

the object. 



Method calls and polymorphism 

• What gets returned for these method calls? 

12/5/2011 CIS 110 (11fa) - University of Pennsylvania 23 

public class Student 
    extends Employee { 
  public String toString() { 
    return "Student: " + 
           getUsername(); 
  } 
} 

public class Employee { 
  public String toString() { 
    return "Employee: " + 
           username; 
  } 
} 

Employee e1 = new Employee(...); 
Student s1 = new Student(...); 
Employee e2 = new Employee(...); 
e1.toString(); 
s1.toString(); 
e2.toString(); 

"Employee: ..." 

"Student: ..." 

"Student: ..." 



Dynamic dispatch 

• When resolving a method call, we start with 
the dynamic (actual) type of the object. 

– If that class defines the method, we invoke it. 

– Otherwise, we repeat the process with its 
immediate superclass. 

12/5/2011 CIS 110 (11fa) - University of Pennsylvania 24 

Employee e = new Faculty(...); 
e.toString(); 

Employee 

Faculty 

"Employee: ..." 
1. Does Faculty 
define toString? No! 

2. Does Employee 
define toString? Yes! 



To inherit or not to inherit 

• Inheritance should be used when one class 
can be substituted for another. 

– Really, class A is-a B  class A extends B. 

– E.g., a Circle IS-NOT a Point even though a circle is 
a point + a radius. 

• Alternative: has-a relationship. 

– A Circle has-a Point as a field. 

12/5/2011 CIS 110 (11fa) - University of Pennsylvania 25 



Interfaces 

12/5/2011 CIS 110 (11fa) - University of Pennsylvania 26 



extends isn't enough 

• Sometimes we want to be able to have two or 
more is-a relationships for a class. 

– e.g., employees that are comparable in addition to 
being people. 

• Sometimes we don't need to share code.  

– Only need to specify a set of "required" methods. 

 

12/5/2011 CIS 110 (11fa) - University of Pennsylvania 27 



Introducing interfaces 

• Interfaces allow us to specify the requirements for an 
is-a relationship without providing any 
implementation details. 

12/5/2011 CIS 110 (11fa) - University of Pennsylvania 28 

public interface Comparable { 
  public int compareTo(Object other); 
} 

public class Student extends Employee implements Comparable { 
  // ... 
  public int compareTo(Object other) { /* ... */ } 
} 



The interface construct 

• Interfaces specify a series of abstract methods that a 
class must implement to, e.g., be Comparable. 

• Classes can implement multiple interfaces (but only 
extend from a single class). 

• Allows us to get polymorphism without code sharing. 

12/5/2011 CIS 110 (11fa) - University of Pennsylvania 29 

public interface Comparable { 
  public int compareTo(Object other); 
} 


