
CIS 110: Introduction to
Computer Programming

Lecture 22 and 23

Objects, objects, objects

(§ 8.1-8.4)

11/28/2011 CIS 110 (11fa) - University of Pennsylvania 1

Outline

• Object-oriented programming.

• What is an object?

• Classes as blueprints for objects.

• Encapsulation

11/28/2011 CIS 110 (11fa) - University of Pennsylvania 2

Any questions?

• Questions, questions, questions?

11/28/2011 CIS 110 (11fa) - University of Pennsylvania 3

My life story

11/28/2011 CIS 110 (11fa) - University of Pennsylvania 4

The awful truth

11/28/2011 CIS 110 (11fa) - University of Pennsylvania 5

Michael-Peter

Peter-Michael

Peter

Michael

A horrible incident

11/28/2011 CIS 110 (11fa) - University of Pennsylvania 6

Michael-Peter

Peter-Michael

Peter

Michael

Revenge

11/28/2011 CIS 110 (11fa) - University of Pennsylvania 7

MHOA

Object-oriented programming

11/28/2011 CIS 110 (11fa) - University of Pennsylvania 8

Procedural programming

Reasoning about programs as a set of
interacting procedures/methods.

11/28/2011 CIS 110 (11fa) - University of Pennsylvania 9

Object-oriented programming

Reasoning about programs as a set of
interacting objects rather than actions.

11/28/2011 CIS 110 (11fa) - University of Pennsylvania 10

Review: what is an object?

• An object is an entity with state and behavior.

– State = values or internal data

– Behavior = actions or methods

• Example: the Scanner object

– State = position in text

– Behavior = nextX(), hasNextX()

11/28/2011 CIS 110 (11fa) - University of Pennsylvania 11

Scanner

Classes revisited

• Classes are programs, i.e., containers for
methods.

• Classes are also blueprints for objects.

11/28/2011 CIS 110 (11fa) - University of Pennsylvania 12

Scanner object Scanner class

new Scanner(…)

Example: the Point class

• In package java.awt.

• Represents a coordinate pair in 2D-space.

– State = (x, y) coordinates

– Behavior = translate or shift coordinates

11/28/2011 CIS 110 (11fa) - University of Pennsylvania 13

Point p = new Point(3, 5);
System.out.println("y-coordinate = " + p.y);
p.translate(1, 1);
System.out.println(p);

p

3

5

x

y

<Methods>

Step 1: declaring state

11/28/2011 CIS 110 (11fa) - University of Pennsylvania 14

public class Point {
 public int x;
 public int y;
 // ... methods go here ...
}

• State = (x, y) coordinates

– Declared as instance variables or fields.

Step 2: declaring behavior

11/28/2011 CIS 110 (11fa) - University of Pennsylvania 15

public class Point {
 // ... fields goes here ...
 public void translate(int dx, int dy) {
 x += dx;
 y += dy;
 }
}

• Behavior = translate or shift coordinates

– Declared as instance methods.

Step 3: declaring constructors

11/28/2011 CIS 110 (11fa) - University of Pennsylvania 16

public class Point {
 // ... everything else goes here ...
 public Point(int initialX, int initialY) {
 x = initialX;
 y = initialY;
 }
}

• Constructors allow us to make new Point objects
from a class.
– Constructors are special methods that are only

invoked when new is used.

Default constructors

11/28/2011 CIS 110 (11fa) - University of Pennsylvania 17

public Point() { }

• If we don't provide a constructor, Java inserts
a default constructor automatically.

• However, since Point has a constructor, the
default constructor is not inserted!

Point p = new Point(); // fails to compile

Multiple constructors

11/28/2011 CIS 110 (11fa) - University of Pennsylvania 18

• We can have multiple constructors to allow clients to
create Points in different ways.

public class Point {
 // ... everything else goes here ...
 // Instantiate with, e.g., new Point(3, 5)
 public Point(int initialX, int initialY) {
 x = initialX;
 y = initialY;
 }

 // Instantiate with, e.g., new Point()
 public Point() {
 x = 0;
 y = 0;
 }
}

Revisited: accessing members of
objects

11/28/2011 CIS 110 (11fa) - University of Pennsylvania 19

• To access a member (field or instance method)
of an object, we use dot notation.

Point p1 = new Point(3, 5);
Point p2 = new Point(0, 0);
System.out.println("y-coordinate = " + p1.y);
p1.translate(1, 1);

• We access/modify p1's members rather than
p2's.

The implicit this parameter

11/28/2011 CIS 110 (11fa) - University of Pennsylvania 20

• In reality, when we reference members of an
object inside a class, we go through the special
this reference.

Point p1 = new Point(3, 5);
Point p2 = new Point(0, 0);
p1.translate(1, 1);
// ...
public class Point {
 // ... everything else goes here ...
 public void translate(int dx, int dy) {
 this.x += dx;
 this.y += dy;
 }
}

p1

3

5

x

y

<Methods>

0

0

x

y

<Methods>

p2

this

Static vs. non-static members

• Note that we don't have static anywhere!

11/28/2011 CIS 110 (11fa) - University of Pennsylvania 21

public class Point {
 // ... fields goes here ...
 public static void translate(int dx, int dy) {
 x += dx;
 y += dy;
 }
}

• Error: "Cannot make a static reference to the
non-static field x"

A tale of two worlds

• Non-static members = part of a particular
object (i.e., instance of a class)

• Static members = part of the class itself
– Have no this reference to play with!

11/28/2011 CIS 110 (11fa) - University of Pennsylvania 22

public class Point {

 public static void main(String[] args) { }
 // Static stuff goes here ^^
 // THE STATIC WORLD AND THE INSTANCE WORLD
 // Non-static stuff goes here vv
 public int x;

}

Example: a Student class

• See anything that can go wrong here?

11/28/2011 CIS 110 (11fa) - University of Pennsylvania 23

public class Student {
 public String firstName;
 public String lastName;
 public String fullName;
 public Student(String firstName, String lastName, String fullName) {
 this.firstName = firstName;
 this.lastName = lastName;
 this.fullName = fullName;
 }
}

Inconsistent state

• fullName can get out of sync pretty easily!

– Seems like bad design: client shouldn't be able to set
fullName differently from firstName and secondName.

– Also, doesn't seem like fullName should be a field
anyways…

11/28/2011 CIS 110 (11fa) - University of Pennsylvania 24

Student s = new Student("Peter-Michael", "Osera",
 "Peter-Michael Osera");
s.firstName = "Michael-Peter";
System.out.println(s.firstName + " " + s.lastName);
System.out.println(s.fullName);

Encapsulation

• Hide away implementation details and only
expose essential functionality.

1. I want to hide the fact that the names are fields
that can be modified.

2. I want to expose the names to the client.

• Encapsulation is a cornerstone of abstraction.

11/28/2011 CIS 110 (11fa) - University of Pennsylvania 25

1. Private fields

• Private fields aren't visible to code outside of the class.
– e.g., s.firstName now gives an error, so we can't access

anything!

11/28/2011 CIS 110 (11fa) - University of Pennsylvania 26

public class Student {
 private String firstName;
 private String lastName;
 private String fullName;
 public Student(String firstName, String lastName, String fullName) {
 this.firstName = firstName;
 this.lastName = lastName;
 this.fullName = fullName;
 }
}

2. getter methods

• Getter methods are regular methods whose
job is to "get" some value from the class.

– e.g., a private field or some calculated value.

11/28/2011 CIS 110 (11fa) - University of Pennsylvania 27

public class Student {
 // Rest of implementation here
 public String getFullName() {
 return fullName;
 }
}

A side-benefit: implementation hiding

• Observation: we don't need fullName!
– Makes no difference to users since they couldn't

access fullName anyways!

– Users only care about what getFullName
returns.

11/28/2011 CIS 110 (11fa) - University of Pennsylvania 28

public class Student {
 // Rest of implementation here
 public String getFullName() {
 return firstName + lastName;
 }
}

A properly encapsulated Student

11/28/2011 CIS 110 (11fa) - University of Pennsylvania 29

public class Student {
 private String firstName;
 private String lastName;

 public Student(String firstName, String lastName) {
 this.firstName = firstName;
 this.lastName = lastName;
 }

 public String getLastName() {
 return lastName;
 }

 public String getFullName() {
 return firstName + " " + lastName;
 }
}

Another example: Student revisited

• See anything else that can go wrong?

11/28/2011 CIS 110 (11fa) - University of Pennsylvania 30

public class Student {
 private int age;
 public Student(int age) {
 this.age = age;
 }
 public int getAge() {
 return age;
 }
}

More inconsistent state

• Negative ages don't make any sense!

• How do we restrict this behavior?

11/28/2011 CIS 110 (11fa) - University of Pennsylvania 31

Student s = new Student(-3175);

Enforcing class invariants

• If the user provides a bad age, throw an
exception!

• age >= 0 is now an invariant of our class.
1. Ensure the user never gives us a bad age.
2. Ensure that we never make age go bad.

11/28/2011 CIS 110 (11fa) - University of Pennsylvania 32

public Student(int age) {
 if (age < 0) {
 throw new IllegalArgumentException();
 }
 this.age = age;
}

