
CIS 110: Introduction to
Computer Programming

Lecture 19

Array Wrap-up

(§ 7.2-7.3)

11/17/2011 CIS 110 (11fa) - University of Pennsylvania 1

Outline

• Side note: bits and integral representations

• The null value

• Multi-dimensional arrays

11/17/2011 CIS 110 (11fa) - University of Pennsylvania 2

Bits and integral representations

11/17/2011 CIS 110 (11fa) - University of Pennsylvania 3

What is actually "in" a variable?

• So far, we've worked at this level of
abstraction for variables:

11/17/2011 CIS 110 (11fa) - University of Pennsylvania 4

42 x

• But computers don't physically store "42" in
memory

Digital representation of data

• Recall from chapter 1: a computer stores all
data digitally, i.e., as a binary number (base 2).

11/17/2011 CIS 110 (11fa) - University of Pennsylvania 5

101010 x

• This is because of the natural of the
electromagnetic switches that store the data.

- Either "on" (value 1) or "off" (value 0).

Java Integers

• Java ints are 32-bit values.

– Each binary digit is called a bit.

11/17/2011 CIS 110 (11fa) - University of Pennsylvania 6

0000000000000000000000000010101
0

x

• Reasoning about numbers in binary is tedious
so we usually use decimal (base 10) instead.

42 x

Color components

• A color component of a pixel is made up of 3
numbers, one for each color.

11/17/2011 CIS 110 (11fa) - University of Pennsylvania 7

11111111 R

10001111 B

00000000 G

• Each component can take on a value from 0-
255 (i.e., 8 bits, or 28 values).

Bit-packing

• We can store each component as an int, but
that is wasteful.
– A component uses 8 bits, but an int uses 32 bits.

• Instead, let's pack all 3 values into a single int!

11/17/2011 CIS 110 (11fa) - University of Pennsylvania 8

00000000111111110000000100001111 c

RED

GREEN

BLUE

The null value

11/17/2011 CIS 110 (11fa) - University of Pennsylvania 9

Arrays of objects

• We've made arrays of primitive types so far.

11/17/2011 CIS 110 (11fa) - University of Pennsylvania 10

• We can make arrays of object types as well.

X [0, 1, 2] int x[] = { 0, 1, 2 };

y [?, ?, ?] String y[] = new String[3];

A question of initialization

• When we make an array of primitive type, we
initialize its elements to "zero values".

11/17/2011 CIS 110 (11fa) - University of Pennsylvania 11

• What is the zero value of a String? In general
any object type?

int arr1[] = new int[3];

double arr2[] = new double[3];

boolean arr3[] = new boolean[3];

arr1 [0, 0, 0]

arr2 [0.0, 0.0, 0.0]

arr4 [false, false, false]

Null means "no reference"

• We specify that "this variable is not
referencing an object" by using the null value.

11/17/2011 CIS 110 (11fa) - University of Pennsylvania 12

String s1 = "hello";

String s2 = null;

s1 "Hello"

s2

• Null is the "zero value" for all objects types.

y [, ,] String y[] = new String[3];

The dreaded NullPointerException

• When you try to call a method/access a field of
an null reference, you get a NullPointerException.

11/17/2011 CIS 110 (11fa) - University of Pennsylvania 13

String s2 = null;
s2.length(); s2

What String? s2 isn't
referencing a

String… AHHHHHH

"Null References: The Billion Dollar
Mistake"

• Abstract of Tony Hoare's talk about null
references (QCon London 2009):

11/17/2011 CIS 110 (11fa) - University of Pennsylvania 14

I call it my billion-dollar mistake. It was the invention of the null reference in
1965. At that time, I was designing the first comprehensive type system for
references in an object oriented language (ALGOL W). My goal was to ensure
that all use of references should be absolutely safe, with checking performed
automatically by the compiler. But I couldn't resist the temptation to put in a
null reference, simply because it was so easy to implement. This has led to
innumerable errors, vulnerabilities, and system crashes, which have
probably caused a billion dollars of pain and damage in the last forty years.

Multi-dimensional arrays

11/17/2011 CIS 110 (11fa) - University of Pennsylvania 15

Arrays of Arrays

• We can declare arrays of primitive types.

11/17/2011 CIS 110 (11fa) - University of Pennsylvania 16

• We can declare arrays of object types.

• But arrays are objects, so we can declare arrays
of arrays.

X [0, 1, 2] int x[] = { 0, 1, 2 };

y [,] String[] y = { "hi", "bye" };

"hi"

"bye"

int[][] z = new int[3][3];

Rectangular two-dimensional arrays

11/17/2011 CIS 110 (11fa) - University of Pennsylvania 17

• Really an array of arrays

int[][] z = new int[3][3];

• Conceptually a grid

z [, ,]

[0, 0, 0]

[0, 0, 0]

[0, 0, 0]

z
[0, 0, 0]
[0, 0, 0]
[0, 0, 0]

Accessing two-dimensional arrays

11/17/2011 CIS 110 (11fa) - University of Pennsylvania 18

int[][] z = new int[3][3];
z[2][1] = 5;

z
[0, 0, 0]
[0, 0, 0]
[0, 5, 0]

• Remember zero-based indexing.

• Think of z[i][j] as "ith row, jth column"

Say hi to you neighbors

11/17/2011 CIS 110 (11fa) - University of Pennsylvania 19

 ...
 1, 2, 3
... 5, 6, 7 ...
 8, 9, 10
 ...

Say the middle element is z[i][j]...

z[i][j-1]

z[i-1][j-1]

z[i+1][j-1]

z[i+1][j]

z[i+1][j]

z[i-1][j+1]

z[i][j+1]

z[i+1][j+1]

Layers upon layers

11/17/2011 CIS 110 (11fa) - University of Pennsylvania 20

int z[][] = new int[3][3];

... z ... // The entire array

... z[1] ... // A single row (an array itself)

... z[1][2] ... // A single element

z
[0, 1, 2]
[3, 4, 5]
[6, 7, 8]

Traversing two-dimensional arrays

int z[][] = new int[3][4];

// for each row...

for (int i = 0; i < z.length; i++) {

 // for each column...

 for (int j = 0; j < z[i].length; j++) {

 // print out the element

 System.out.println(z[i][j]);

 }

}

11/17/2011 21 CIS 110 (11fa) - University of Pennsylvania

[0, 1, 2]
[3, 4, 5]
[6, 7, 8]
[9, 0, 1]

N-dimension arrays

• We can have as many dimensions as we want!

11/17/2011 CIS 110 (11fa) - University of Pennsylvania 22

int threeDims[][][] = new int[3][4][5];
int fourDims[][][][] = new int[5][7][9][10];

• Same logic as before applies!

• How we interpret the dimensions is irrelevant
as long as we are consistent.

Jagged arrays

• Array rows need not have the same length,
i.e., they can be jagged.

11/17/2011 CIS 110 (11fa) - University of Pennsylvania 23

z [, ,]

[0, 1]

[2, 3, 4]

[5]

Initializing jagged arrays

• We have to manually create jagged arrays by
initializing each row at a time.

11/17/2011 CIS 110 (11fa) - University of Pennsylvania 24

z [, ,]

[0, 1]

[2, 3, 4]

[5]

int[][] z = new int[3][];

z[0] = { 0, 1 };

z[1] = { 2, 3, 4 };

z[2] = new int[1];

z[2][0] = 5;

• Otherwise they
behave like
rectangular arrays!

The Arrays helper class (in java.util)

11/17/2011 CIS 110 (11fa) - University of Pennsylvania 25

// Returns the string representation of arr suitable for
// printing, e.g., [0, 2, 3, 4, 5]
Arrays.toString(arr);

// Returns true if the elements of the array are pairwise equals
Arrays.equals(arr1, arr2);

// Fills the array with the given value
Arrays.fill(arr, value);

// Returns a copy of the given array with the specified length,
// either truncating elements or filling with zero-values to
// meet that length
Arrays.copyOf(arr, len);

// toString and equals variants that work for multi-dimensional arrays
Arrays.deepToString(arr);
Arrays.deepEquals(arr1, arr2);

