
CIS 110: Introduction to
Computer Programming

Lecture 15

Our Scanner eats files

(§ 6.1-6.2)

10/31/2011 CIS 110 (11fa) - University of Pennsylvania 1

Outline

• Programming assertion recap

• The Scanner object and files

• Token-based file processing

10/31/2011 CIS 110 (11fa) - University of Pennsylvania 2

Exam announcements

• Attempting to reschedule midterm #2 to 11/21
(Monday of Thanksgiving break)

– Let me know asap if you will be out of town.

• Final time has been confirmed for 12/19, 6-8 PM

– Let me know asap if you need to reschedule.

10/31/2011 CIS 110 (11fa) - University of Pennsylvania 3

Programming assertions revisited

10/31/2011 CIS 110 (11fa) - University of Pennsylvania 4

An extended example: mystery

10/31/2011 CIS 110 (11fa) - University of Pennsylvania 5

public static int mystery(int n) {
 int x = 0;
 // Point A
 if (n < 0) { return -1; }
 while (n != 0) {
 // Point B
 int d = n % 10;
 if (d % 2 == 1) {
 x += d;
 }
 // Point C
 n /= 10;
 }
 // Point D
 return x;
}

For each point, are the
following
always/sometimes/never true?
1) n < 0
2) x >= 0
3) d < 10
4) x < n
(See AssertionProblem.java.)

The Scanner object and files

10/31/2011 CIS 110 (11fa) - University of Pennsylvania 6

Scanners revisited

• A Scanner is a faucet over some pipe of data.

10/31/2011 CIS 110 (11fa) - University of Pennsylvania 7

System.in
Scanner

Empty pipes

• If the pipe is empty, the scanner first gets a line of
input from the user, e.g., one call to next().

10/31/2011 CIS 110 (11fa) - University of Pennsylvania 8

Hello world! 42\n

System.in
Scanner

Consuming input from the pipe

• The call to next() then consumes the first
token of input.

10/31/2011 CIS 110 (11fa) - University of Pennsylvania 9

world! 42\n

System.in
Scanner

Hello
(Token = chunk of text
separated by whitespace)

Consuming tokens

• When we consume a token, there's no way to
"go back", only forward!

10/31/2011 CIS 110 (11fa) - University of Pennsylvania 10

42\n

System.in
Scanner

world!
Hello

Consuming tokens as different types

• We can consume a token and translate it to a
particular type, e.g., nextInt().

10/31/2011 CIS 110 (11fa) - University of Pennsylvania 11

\n

System.in
Scanner

42
world!
Hello

Consuming the rest of a line

• We can consume the rest of a line with
nextLine().

10/31/2011 CIS 110 (11fa) - University of Pennsylvania 12

\n

System.in
Scanner

\n
42
world!
Hello

Plugging in different data sources

• A Scanner can accept many kinds of data
sources such as Files instead!

10/31/2011 CIS 110 (11fa) - University of Pennsylvania 13

File
Scanner

Scanner file =
 new Scanner(new File("data.txt"));

The File object

• A File object represents a file or directory on disk.

– Exists in the java.io package.

10/31/2011 CIS 110 (11fa) - University of Pennsylvania 14

File

File file = new File("data.txt");
System.out.println("canRead? " + file.canRead());
System.out.println("exists? " + file.exists());
// Renames the file to the given file's name.
file.renameTo(new File("foo.txt"));
// Deletes the file from disk if it exists.
file.delete();

An exceptional problem

• The following code fails to compile. Why?
– "unreported exception
java.io.FileNotFoundException; must be
caught or declared to be thrown"

• Example of a checked exception in Java.

10/31/2011 CIS 110 (11fa) - University of Pennsylvania 15

public static void main(String[] args) {
 Scanner file = new Scanner(new File("data.txt"));
}

Checked and unchecked exceptions

• Java distinguishes between two sorts of
exceptions.

– Unchecked exceptions represent program bugs

– Checked exceptions represent badness outside of
the program's control.

10/31/2011 CIS 110 (11fa) - University of Pennsylvania 16

Unchecked exceptions
IndexOutOfBoundsException

IllegalArgumentException
StackOverflowError

Checked exceptions
FileNotFoundException

Dealing with checked exceptions

• Two solutions:

– Annotate the enclosing method with a throws clause.

– Use a try-catch block.

10/31/2011 CIS 110 (11fa) - University of Pennsylvania 17

public static void main(String[] args)
 throws FileNotFoundException {
Scanner file =
 new Scanner(new File("data.txt"));
}

try {
 Scanner file = new Scanner(
 new File("data.txt"));
} catch (FileNotFoundException ex) {
 ex.printStackTrace();
}

Which do we use!?

Checked exceptions: a holy war

• Big debate if checked exceptions are "worth it".

• General advice: use try-catch when you can do
something meaningful with the exception.

– Give a good error message, re-throw, etc.

• For this class: we'll use throws clauses.

10/31/2011 CIS 110 (11fa) - University of Pennsylvania 18

public static void main(String[] args)
 throws FileNotFoundException {
Scanner file =
 new Scanner(new File("data.txt"));
}

Token-based processing

10/31/2011 CIS 110 (11fa) - University of Pennsylvania 19

Abstraction at its finest

• The methods of the Scanner we've learned so
far apply when we use a File instead!

10/31/2011 CIS 110 (11fa) - University of Pennsylvania 20

File
Scanner

Scanner file =
 new Scanner(new File("data.txt"));

File processing example: FileSum

import java.util.*;
// Necessary since FileNotFoundException is also in java.io.
import java.io.*;

public class FileSum {
 public static void main(String[] args)
 throws FileNotFoundException {
 Scanner file = new Scanner(new File("data.txt"));
 double sum = 0.0;
 while(file.hasNextDouble()) {
 double d = file.nextDouble();
 System.out.println("Adding up " + d + "...");
 sum += d;
 }
 System.out.println("Total = " + sum);
 }
}

10/31/2011 21 CIS 110 (11fa) - University of Pennsylvania

A file is just a long-ass string

while(file.hasNextDouble()) {

 double d = file.nextDouble();

}

10/31/2011 22 CIS 110 (11fa) - University of Pennsylvania

3.4 7.1 4.3\n 5.9 1.1 2.5\n\n\n3.6 -1.2\n

3.4 7.1 4.3
 5.9 1.1 2.5

3.6 -1.2

data.txt We can think of a
file as a sequence
of characters by
replacing newlines
with '\n'

Input cursor

while(file.hasNextDouble()) {

 double d = file.nextDouble();

}

10/31/2011 23 CIS 110 (11fa) - University of Pennsylvania

3.4 7.1 4.3\n 5.9 1.1 2.5\n\n\n3.6 -1.2\n

data.txt

The input cursor is our
current position in the file,
initially at the beginning.

Input cursor

Input cursor and input consumption

while(file.hasNextDouble()) {

 double d = file.nextDouble();

}

10/31/2011 24 CIS 110 (11fa) - University of Pennsylvania

3.4 7.1 4.3\n 5.9 1.1 2.5\n\n\n3.6 -1.2\n

data.txt

On each call to nextDouble,
we consume the next
double and advance the
input just past the token.

Input cursor

Jumping that whitespace

while(file.hasNextDouble()) {

 double d = file.nextDouble();

}

10/31/2011 25 CIS 110 (11fa) - University of Pennsylvania

3.4 7.1 4.3\n 5.9 1.1 2.5\n\n\n3.6 -1.2\n

data.txt

Calls to nextX()
skip whitespace to
the next token.

Input cursor

Newlines are whitespace

while(file.hasNextDouble()) {

 double d = file.nextDouble();

}

10/31/2011 26 CIS 110 (11fa) - University of Pennsylvania

3.4 7.1 4.3\n 5.9 1.1 2.5\n\n\n3.6 -1.2\n

data.txt

Input cursor

3.4 7.1 4.3\n 5.9 1.1 2.5\n\n\n3.6 -1.2\n

Input cursor

hasNextX looks ahead

while(file.hasNextDouble()) {

 double d = file.nextDouble();

}

10/31/2011 27 CIS 110 (11fa) - University of Pennsylvania

data.txt

3.4 7.1 4.3\n 5.9 1.1 2.5\n\n\n3.6 -1.2\n

Input cursor hasNextDouble()
now returns false!

Mixing up types

• We can mix different nextX functions as
necessary.

10/31/2011 CIS 110 (11fa) - University of Pennsylvania 28

Jerry 21 13.7 true

file.next();

file.nextInt();

file.nextDouble();

file.nextBooelean(); But we get
NoSuchElementException
if we're wrong!

