CIS 110: Introduction to

Computer Programming

10/31/2011

Lecture 15
Our Scanner eats files
(§ 6.1-6.2)

CIS 110 (11fa) - University of Pennsylvania



Outline

* Programming assertion recap
 The Scanner object and files
* Token-based file processing

10/31/2011 CIS 110 (11fa) - University of Pennsylvania 2



Exam announcements

e Attempting to reschedule midterm #2 to 11/21
(Monday of Thanksgiving break)

— Let me know asap if you will be out of town.

* Final time has been confirmed for 12/19, 6-8 PM
— Let me know asap if you need to reschedule.

10/31/2011 CIS 110 (11fa) - University of Pennsylvania 3



Programming assertions revisited



An extended example: mystery

public static int mystery(int n) {
int x = 0;
// Point A
if (n < ) { return -1; }
while (n '=0) { For each point, are the
{/ Point B following
int d = n % 10; always/sometimes/never true?
if (d % 2 == 1) { 1) n< @
X += d; 2) X >= 0
} 3) d < 10
// Point C 4) x <n .
n /= 10: (See AssertionProblem.java.)
J
}
// Point D
return Xx;
} |
’ennsylvania 5




The Scanner object and files



Scanners revisited

* A Scanner is a faucet over some pipe of data.

Scanner
System.in

10/31/2011 CIS 110 (11fa) - University of Pennsylvania 7



Empty pipes

* If the pipe is empty, the scanner first gets a line of
input from the user, e.g., one call to next ().

Scanner

System.in

Hello world! 42\n

10/31/2011 CIS 110 (11fa) - University of Pennsylvania 8



Consuming input from the pipe

* The call to next() then consumes the first
token of input.

Scanner

] |
x

System.in

world! 42\n

(Token = chunk of text
separated by whitespace)

10 110 (11fa) - University of Pennsylvania



Consuming tokens

 When we consume a token, there's no way to
"go back", only forward!

Scanner
System.in

world!
Hello

10 110 (11fa) - University of Pennsylvania 10



Consuming tokens as different types

e \We can consume a token and translate it to a
particular type, e.g., nextInt().

Scanner

System.in

110 (11fa) - University of Pennsylvania 11



Consuming the rest of a line

e We can consume the rest of a line with
nextLine().

Scanner
System.in

world!
Hello

10 110 (11fa) - University of Pennsylvania 12



Plugging in different data sources

* A Scanner can accept many kinds of data
sources such as Files instead!

Scanner

Scanner file =
new Scanner(new File("data.txt"));

10/31/2011 CIS 110 (11fa) - University of Pennsylvania 13



The File object

* A File object represents a file or directory on disk.

— Exists in the java.io package.

File file = new File("data.txt");
System.out.println("canRead? " + file.canRead());
System.out.println("exists? " + file.exists());
// Renames the file to the given file's name.
file.renameTo(new File("foo.txt"));

// Deletes the file from disk if it exists.
file.delete();

File

10/31/2011 CIS 110 (11fa) - University of Pennsylvania 14




An exceptional problem

public static void main(String[] args) {
Scanner file = new Scanner(new File("data.txt"));

¥

* The following code fails to compile. Why?

— "unreported exception
java.lilo.FileNotFoundException; must be
caught or declared to be thrown”

 Example of a checked exception in Java.

10/31/2011 CIS 110 (11fa) - University of Pennsylvania 15




Checked and unchecked exceptions

e Java distinguishes between two sorts of
exceptions.
— Unchecked exceptions represent program bugs

— Checked exceptions represent badness outside of
the program's control.

Checked exceptions
FileNotFoundException

Unchecked exceptions
IndexOutOfBoundsException

lllegalArgumentException
StackOverflowError

10/31/2011 CIS 110 (11fa) - University of Pennsylvania 16



Dealing with checked exceptions

* Two solutions:
— Annotate the enclosing method with a throws clause.
— Use a try-catch block.

public static void main(String[] args)
throws FileNotFoundException {
Scanner file =
new Scanner(new File("data.txt"));

} Which do we use!?

try {
Scanner file = new Scanner(

new File("data.txt"));
} catch (FileNotFoundException ex) {
ex.printStackTrace();

}

10/31/2011 CIS 110 (11fa) - University of Pennsylvania 17




Checked exceptions: a holy war

* Big debate if checked exceptions are "worth it".

* General advice: use try-catch when you can do
something meaningful with the exception.

— Give a good error message, re-throw, etc.

 For this class: we'll use throws clauses.

public static void main(String[] args)
throws FileNotFoundException {

Scanner file =
new Scanner(new File("data.txt"));

}

10/31/2011 CIS 110 (11fa) - University of Pennsylvania

18



Token-based processing



Abstraction at its finest

* The methods of the Scanner we've learned so
far apply when we use a File instead!

Scanner

Scanner file =
new Scanner(new File("data.txt"));

10/31/2011 CIS 110 (11fa) - University of Pennsylvania 20



File processing example: FileSum

import java.util.*;
// Necessary since FileNotFoundException is also in java.lio.
import java.io.¥;

public class FileSum {
public static void main(String[] args)
throws FileNotFoundException {
Scanner file = new Scanner(new File("data.txt"));
double sum = 0.0;
while(file.hasNextDouble()) {
double d = file.nextDouble();

System.out.println("Adding up " +d + "...");
sum += d;

}

System.out.println("Total = " + sum);

10/31/2011 CIS 110 (11fa) - University of Pennsylvania 21



A file is just a long-ass string

data.txt 3.4 7.1 4.3
5.9 1.1 2.5
3.6 1.2

10/31/2011

We can think of a
file as a sequence
of characters by
replacing newlines
with '\n'

3.4 7.1 4.3\n 5.9 1.1 2.5\n\n\n3.6

-1.2\n

}

while(file.hasNextDouble()) {
double d = file.nextDouble();

CIS 110 (11fa) - University of Pennsylvania

22




Input cursor

3.4 7.1 4.3\n 5.9 1.1 2.5\n\n\n3.6

Input cursor

The input cursor is our
current position in the file,
initially at the beginning.

data.txt | while(file.hasNextDouble()) {
double d = file.nextDouble();

10/31/2011 CIS 110 (11fa) - University of Pennsylvania 23



Input cursor and input consumption

3.4 7.1 4.3\n 5.9 1.1 2.5\n\n\n3.6 -1.2\n

On each call to nextDouble,
we consume the next
double and advance the
input just past the token.

Input cursor

data.txt | while(file.hasNextDouble()) {
' double d = file.nextDouble();

}

10/31/2011 CIS 110 (11fa) - University of Pennsylvania 24




Jumping that whitespace

3.4 7.1 4.3\n 5.9 1.1 2.5\n\n\n3.6 -1.2\n

Input cursor Calls to nextX()
skip whitespace to
the next token.

data.txt | while(file.hasNextDouble()) {
' double d = file.nextDouble();

}

10/31/2011 CIS 110 (11fa) - University of Pennsylvania 25




Newlines are whitespace

3.4 7.1 4.3\n 5.9 1.1 2.5\n\n\n3.6

Input cursor

3.4 7.1 4.3\n 5.9 1.1 2.5\n\n\n3.6

Input cursor

data.txt | while(file.hasNextDouble()) {
double d = file.nextDouble();

}

10/31/2011 CIS 110 (11fa) - University of Pennsylvania 26




hasNextX looks ahead

3.4 7.1 4.3\n 5.9 1.1 2.5\n\n\n3.6

hasNextDouble() Input cursor
now returns false!

data.txt | while(file.hasNextDouble()) {
double d = file.nextDouble();

}

10/31/2011 CIS 110 (11fa) - University of Pennsylvania 27




Mixing up types

e We can mix different nextX functions as
necessary.

Jerry 21 13.7 true

file.nextDouble();

But we get file.nextBooelean();
NoSuchElementException

if we're wrong!

10/31/2011 CIS 110 (11fa) - University of Pennsylvania 28



