
CIS 110: Introduction to
Computer Programming

Lecture 13

Indefinite Loops

(§ 5.1-5.2)

10/26/2011 CIS 110 (11fa) - University of Pennsylvania 1

Outline

• Indefinite loops with while

• Fencepost and sentinel loops

10/26/2011 CIS 110 (11fa) - University of Pennsylvania 2

Indefinite Loops

10/26/2011 CIS 110 (11fa) - University of Pennsylvania 3

Indefinite Loop Bounds

• So far we’ve known the bounds of our loops
before we’ve executed the loop themselves.

– e.g., for (int i = 0; i < 10; i++) { /* ... */ }

• Many loops don't offer that luxury...
// while the user hasn't input "yes" yet

// Ask the user for input

10/26/2011 CIS 110 (11fa) - University of Pennsylvania 4

Problem: firstDivisor

• Problem: write a method firstDivisor(x, y)
that returns the first number that divides x
starting at y and going up.

– Example: firstDivisor(26, 10) = 13

– Indefinite behavior: the amount of numbers we'll
check depends on x and y.

10/26/2011 CIS 110 (11fa) - University of Pennsylvania 5

firstDivisor Solution

public static int firstDivisor(int x, int y) {

 while (x % y != 0) {

 y += 1;

 }

 return y;

}

public static void main(String[] args) {

 // Output: 13

 System.out.println(firstDivisor(26, 10));

}

10/26/2011 6 CIS 110 (11fa) - University of Pennsylvania

While loops

• "While the guard is true, execute the body".

– Like an if-statement, but looping!

10/26/2011 CIS 110 (11fa) - University of Pennsylvania 7

while (x % y != 0) {

 y += 1;

}

Guard

Body

While Loops vs. For Loops

• Can express the same kinds of loops.

• Some benefit to for over while (i.e., scoping).

• for is meant for definite loops: "loop x times".

• while is meant for indefinite loops: "loop until
some condition is met".

10/26/2011 CIS 110 (11fa) - University of Pennsylvania 8

for (int i = 0; i < 10; i++) {
 System.out.println(i);
}

int i = 0;
while (i < 10) {
 System.out.println(i);
 i++;
}

The Random Object

• Random objects to generate (pseudo)-random
numbers

– "Pseudo"-random because they are still the result
of mathematical formula

10/26/2011 CIS 110 (11fa) - University of Pennsylvania 9

Random rand = new Random();
double value = 0;
while(value <= 0.5) {
 System.out.printf("%.2f is less than or equal to 5.\n", value);
 // nextDouble returns a double between 0.0 and 1.0
 value = rand.nextDouble();
}
System.out.printf("%.2f is greater than 5!\n", value);

Method calls of the Random object

10/26/2011 CIS 110 (11fa) - University of Pennsylvania 10

Random rand = new Random();
// Prints a random integer betweem -2^31 to (2^31)-1
System.out.println(rand.nextInt());

// Prints a random integer between 0 and 9
System.out.println(rand.nextInt(10));

// Prints out a random double starting at 0.0 up to
// (but not including) 1.0
System.out.println(rand.nextDouble());

// Prints either true or false randomly
System.out.println(rand.nextBoolean());

Simulations and Games

• Application of indefinite loops.

– Repeatedly executes until some condition is met.

– E.g., simulating a random walk.

10/26/2011 CIS 110 (11fa) - University of Pennsylvania 11

Random rand = new Random();
int position = 1;
while (position > 0) {
 System.out.println("I am currently at " + position);
 if (rand.nextBoolean()) {
 position += 1;
 } else {
 position -= 1;
 }
}
System.out.println("I am back home!");

Fencepost and Sentinel Loops

10/26/2011 CIS 110 (11fa) - University of Pennsylvania 12

The fencepost problem

• Problem: write a method fencepost(n) that
takes an integer and draws a fencepost of
length n.

– e.g., fencepost(5) prints |=|=|=|=|

10/26/2011 CIS 110 (11fa) - University of Pennsylvania 13

Fencepost solution?

• Not good enough!

– Prints out an extra wire, e.g., |=|=|=|=|=

10/26/2011 CIS 110 (11fa) - University of Pennsylvania 14

public static void fencepost(int n) {
 for (int i = 0; i < n; i++) {
 System.out.print("|=");
 }
 System.out.println();
}

Hoisting is the solution!

• We hoisted part of the first iteration of the
loop (i.e., the first post) and flipped the body.
– Now the pattern works!

• Loop-and-a-half is a common pattern!

10/26/2011 CIS 110 (11fa) - University of Pennsylvania 15

public static void fencepost(int n) {
 System.out.print("|");
 for (int i = 1; i < n; i++) {
 System.out.print("=|");
 }
 System.out.println();
}

Sentinels

• Sentinels are values that designate when a
loop should end.

• Problem: write a loop that sums up positive
integers from the user until they enter -1 to
end the process.

– -1 is the sentinel value in this loop.

10/26/2011 CIS 110 (11fa) - University of Pennsylvania 16

// while the user's input isn't -1
// get an input from the user and add it to our running sum.

Sentinel solution?

• Not good enough!

– Prints out one less than the sum? Why?

10/26/2011 CIS 110 (11fa) - University of Pennsylvania 17

Scanner in = new Scanner(System.in);
int sum = 0;
int input = 0; // Prime loop so we enter it initially.
while (input != -1) {
 System.out.print("num? ");
 input = in.nextInt();
 sum += input;
}
System.out.println("sum = " + sum);

Solution: hoist out some input!

• Now it works!

– We hoisted out one prompt out of the loop and
changed the order of summation and prompting.

10/26/2011 CIS 110 (11fa) - University of Pennsylvania 18

Scanner in = new Scanner(System.in);
int sum = 0;
// Hoist out half of the loop!
System.out.print("num? ");
int input = in.nextInt();
while (input != -1) {
 sum += input;
 System.out.print("num? ");
 input = in.nextInt();
}
System.out.println("sum = " + sum);

