
10/22/2011

CIS 110 (11fa) - University of Pennsylvania 1

CIS 110: Introduction to
Computer Programming

Lecture 12

Authoring Solid Helper Methods

(§ 4.4)

10/22/2011 CIS 110 (11fa) - University of Pennsylvania 1

Outline

• Authoring Helper Methods

– Pre- and post-conditions

– Exceptions

10/22/2011 CIS 110 (11fa) - University of Pennsylvania 2

System.out.printf

• An alternative to println/print that lets you
format the output.

10/22/2011 CIS 110 (11fa) - University of Pennsylvania 3

System.out.printf("Example of printf: %d %.2f %s",
 12, 1.241, "Chowder");
> Example of printf: 12 1.24 Chowder

A format specifier.
A placeholder for a

thing to print.

Specifiers have the form:
%<formatting><type>

Need to provide one argument
per format specifier. They are

consumed in-order.
See p. 260 of the book for
more information about
format specifiers.

Helper Methods

10/22/2011 CIS 110 (11fa) - University of Pennsylvania 4

See PalindromeChecker.java

Sample Problem

• Problem: write a program that reads in a
String from the user, checks to see if that
String is a palindrome, and informs the user of
the results of the check.

10/22/2011 CIS 110 (11fa) - University of Pennsylvania 5

Example output
> Enter a string to check:
> abba
> The reverse of the line is: abba
> The line is a palindrome!

Our Methodology

1. Try some example inputs to get a feel for the
problem.

2. Start with a skeleton of the solution.

3. Decompose the problem into sub-problems.

4. Make helper methods to solve the sub-
problems.

5. Use those helper methods to solve your main
problem.

10/22/2011 CIS 110 (11fa) - University of Pennsylvania 6

10/22/2011

CIS 110 (11fa) - University of Pennsylvania 2

Helper Methods

public static String reverse(String s) {

 String ret = "";

 for (int i = 0; i < s.length(); i++) {

 ret = s.charAt(i) + ret;

 }

 return ret;

}

10/22/2011 CIS 110 (11fa) - University of Pennsylvania 7

• Critical pieces of code that do the work.

− Decomposition allows us to identify these methods
and focus our time on getting them right.

Restrictions on Method Parameters

• Like user input, sometimes we wish to limit
what we can pass into a method.

10/22/2011 CIS 110 (11fa) - University of Pennsylvania 8

public static String gpaToGrade(double gpa) {

 if (gpa > 3.3) {

 return "A";

 } else if (gpa > 2.5) {

 return "B";

 } else if (gpa > 1.7) {

 return "C";
 } else if (gpa > 0.7) {

 return "D";

 } else {

 return "=(";

 }
}

GPA should be non-
negative and less than 4.0

Pre- and Post-Conditions

• Pre- and post-conditions formalize these
restrictions.
– Pre-condition: a requirement on the parameters that

must be true for the method to work correctly.
– Post-condition: a guarantee made by the method if all

of its pre-conditions are met.

10/22/2011 CIS 110 (11fa) - University of Pennsylvania 9

// Given a GPA, returns a letter grade for that GPA.

// pre: 0 <= gpa <= 4.0

// post: a letter grade or a sad face if the gpa is...

// less than ideal.

public static String gpaToGrade(double gpa) {

// ...
}

Exceptions

• We can use exceptions to enforce the pre-
condition instead of trusting the programmer!
– Example of defensive programming.

10/22/2011 CIS 110 (11fa) - University of Pennsylvania 10

// Given a GPA, returns a letter grade for that GPA.

// pre: 0 <= gpa <= 4.0

// post: a letter grade or a sad face if the gpa is...

// less than ideal.

public static String gpaToGrade(double gpa) {

 if (gpa < 0 || gpa > 4.0) {

 throw new IllegalArgumentException("GPA out of range");
 }

 // ...
}

Raises an error like we’ve seen
with out-of-bounds charAt.

Anatomy of Throwing an Exception

throw new IllegalArgumentException("GPA out of range");

10/22/2011 CIS 110 (11fa) - University of Pennsylvania 11

“new …” creates a new object of
type IllegalArgumentException.

throw raises the exception,
immediately exiting successive

methods until the entire
program is aborted.

An informative
message to be
printed by the

Exception

We’ll learn how to catch
exceptions and author our
own later in the course.

Control Flow in a Method

• Both throw and return allow us to exit a method
prematurely.

– throw: with an error

– return: with a value

• Aside: we can return from methods that don’t return
values to immediately stop execution.

10/22/2011 CIS 110 (11fa) - University of Pennsylvania 12

public static void printIfPositive(int x) {

 if (x < 0) {

 return;

 }

 System.out.println(x + " is positive!");

}

