
CIS 110: Introduction to
Computer Programming

Lecture 3

Express Yourself

(§ 2.1)

9/16/2011 CIS 110 (11fa) - University of Pennsylvania 1

Outline

1. Data representation and types

2. Expressions

9/16/2011 CIS 110 (11fa) - University of Pennsylvania 2

Administrivia

• http://www.cis.upenn.edu/~cis110

• Sign up for Piazza!

• New lab section: Lab 214, Th 5-6 PM.

• Last call for move/swap/register requests.

• Lab assignment #1: due at the start of lab.

• HW #1 out: due next Monday (online).

• A note on feeling lost and help!

9/16/2011 CIS 110 (11fa) - University of Pennsylvania 3

Homework 1

• Reproduce song lyrics that have a certain
structure to them.

– Capture structure and eliminate redundancy.

• Only use classes, static methods, and printlns

• We grade on correctness and design.

– Correctness: “Does your output match exactly
with the desired output from the write-up?”

– Design: “Is your solution well-designed?”

9/16/2011 CIS 110 (11fa) - University of Pennsylvania 4

Homework Design Guidelines

• Does your code meet the design goals stated in
the write-up?
– HW 1: did you capture structure and eliminate

redundancy as much as reasonably possible?

• Does your code meet our style guidelines?
– Consistent indentation, naming, etc.
– Method comments, file-header comment.
– No “work” done directly in main.
– 80 characters at most per line.

• Standard with historical roots: 80 line terminals!

– Good style is like flossing!

9/16/2011 CIS 110 (11fa) - University of Pennsylvania 5

http://www.cis.upenn.edu/~cis110/style.shtml

Data Representation and Types

9/16/2011 CIS 110 (11fa) - University of Pennsylvania 6

The Digital Realm

• Computers store data as sequences of bits

– Bits are just 0s and 1s

– E.g., 0101 1101 could be

• The integer 93 (interpreted as a binary integer)

• The real number 1.3*e-43 (interpreted as an IEEE 754
floating point number)

• The character ‘]’ (interpreted as a Unicode character)

• How do we know how to interpret a series of
bits stored in memory?

9/16/2011 CIS 110 (11fa) - University of Pennsylvania 7

A Type for Every Datum

• Types distinguish between different
interpretations of data.

– Interpreting 0101 1101 as a

• int gives us the integer 93.

• double gives us the floating-point number 1.3*e-43.

• char gives us the character ‘]’.

• int, double, and char are primitive types.

– Other primitive types: boolean, byte, float.

• We’ll talk about boolean later, ignore the rest.

9/16/2011 CIS 110 (11fa) - University of Pennsylvania 8

Java is a High-level Language

• With Java, we rarely (if ever) need to deal with
data at the level of 1s and 0s.

– We work with ints, doubles, chars, directly.

• 93, 1.3*e-43, and ‘]’ instead of 0101 1101.

• However, data representation still influences
the behavior of some operations…!

9/16/2011 CIS 110 (11fa) - University of Pennsylvania 9

Expressions

9/16/2011 CIS 110 (11fa) - University of Pennsylvania 10

What is an Expression?

• An expression is a value or a set of operators that
produces a value that your program can use

– e.g., an arithmetic calculation

9/16/2011 CIS 110 (11fa) - University of Pennsylvania 11

(5.0/9.0) * (100 – 32)

(5.0/9.0) (100 – 32)

5.0 9.0 100 32

An expression

Two expressions

A whole bunch of
expressions!

Operators

Literal Expressions

• Literal expressions evaluate to the value they
literally stand for.

9/16/2011 CIS 110 (11fa) - University of Pennsylvania 12

int 0 45 -137 0xF31

double 0.15 8.1 55.0 -13.2

char ‘Q’ ‘\n’ ‘\’’ ‘\\’

boolean true false

Compound Expressions

+ - * / %

9/16/2011 CIS 110 (11fa) - University of Pennsylvania 13

• Compound expressions are formed by
connecting sub-expressions with operators.

– e.g., the mathematical operators

1 + 1

24 – 18

3 * 8 – 2

4.0 / 3.2

13 * 3 % 2

44 – 2 * 8

Division with ints and mod

• int arithmetic produces ints not doubles!

– Ex. 22/6 = 3 not 3.6666666667.

• Recall: 4th grade (?) arithmetic

– 22/6 = a whole part 3 with a remainder of 4
(3+3+3+4 = 26)

• Division (/) on ints returns the whole part

• Mod (%) on ints returns the remainder

– 22%6 = 4

9/16/2011 CIS 110 (11fa) - University of Pennsylvania 14

Precedence and Grouping

• Precedence is the strength with which certain
operators bind to sub-expressions.
– e.g., 1 + 2 * 3 = 7 not 9!

• For arithmetic, precedence is how you learned
it in grade school.
– *, /, and % have higher precedence or binds

tighter than + and –

• You can override precedence with parenthesis
– e.g., (1 + 2) * 3 = 9!

9/16/2011 CIS 110 (11fa) - University of Pennsylvania 15

Going Between ints and doubles

• 22/6 = 3 but what if we want 3.6666667?

– Solution: the following give us what we want

9/16/2011 CIS 110 (11fa) - University of Pennsylvania 16

22.0/6.0 22.0/6 22/6.0

• The rule: if one operand is a double, the
result is a double

Casts

• 22.0/6 = 3.6666667 but what if we want 3?

– Solution: casting! (int) 3.666667 = 3

– Casting from int to double truncates the decimal.

• Syntax: (<type>) <expression>

– Casting is a unary operator with low precedence

• (int) 3.0 / 4 is equivalent to (int) (3.0 / 4)

• Beware, casting between int and char doesn’t do
what you want!

– e.g., (int) ‘3’ is not equal to the number 3!

9/16/2011 CIS 110 (11fa) - University of Pennsylvania 17

String Concatenation

• The concatenation operation (+) glues two Strings together.
– “hi” + “bye” evaluates to “hibye”

• Java kindly allows us to concatenate a String and a
non-String.
– “val: “ + (40/3) evaluates to “val: 13”.

• Concatenation as the same precedence as addition, so
errors can arise…
– “val: “ + 20 – 3 is the same as (“val: “ + 20) – 3.
– “val: “ + 20 evaluates to the string “val: 20”.
– “val: 20” – 3 is not a valid operation because you can’t

subtract a string from a number!

9/16/2011 CIS 110 (11fa) - University of Pennsylvania 18

println Does Not Produce Values

• The following is invalid code!

– System.out.println(“5”) + 10

• Printing a value is not the same as producing a
value for use in your program.

– Println “sends off” a copy of the string to your
screen, never to be used by others again.

– An example of a side-effect in Java.

9/16/2011 CIS 110 (11fa) - University of Pennsylvania 19

