CIS 110 — Introduction To Computer Programming

November 21st, 2011 — Exam 2

Answer key for review problems

CIS 110 Exam 2 Instructions

You have 50 minutes to finish this exam. Time will begin when called by a proctor and end
precisely 50 minutes after that time. If you continue writing after the time is called, you will
receive a zero for the exam.

This exam is closed-book, closed-notes, and closed-computational devices except for a one page
sheet (8.5” by 117) of double-sided notes.

When writing code, the only abbreviations you may use are as follows:

System.out.println — S.O.PLN
System.out.print — S.O.P
System.out.printf — S.O.PF

Otherwise all code must be written out as normal.

Please do not separate the pages of the exam. If a page becomes loose, please make sure to
write your name on it so that we don’t lose it, and use the provided staplers to reattach the
sheet when you turn in your exam.

If you require extra paper, please use the backs of the exam pages or the extra sheet paper
provided at the end of the exam. Clearly indicate on the question page where the graders
can find the remainder of your work (e.g., ”back of page” or ”"on extra sheet”).

If you have any questions, please raise your hand and an exam proctor will come to answer
them.

When you turn in your exam, you will be required to show ID. If you forgot to bring your
1D, please talk to an exam proctor immediately.

Good luck, have fun!

CIS 110 Exam 2 Cheat Sheet

/** 1. For syntax, look at the format of the code presented in the questions
* (unless otherwise stated, it is all syntactically correct code). */

/**x 2. Useful methods for String objects */

charAt (index) // Returns the character at the given (zero-based) index.
endsWith(text) // Returns true if the string ends with the given text.
index0f (character) // Returns the (zero-based) index of the given character.
length() // Returns the length of the string.

startsWith(text) // Returns true if the string starts with the given text.

substring(start, stop) // Returns the characters from the start index to just
// before the stop index

toLowerCase () // Returns a new string with all lower case characters.

toUpperCase () // Returns a new string with all upper case characters.

/** 3. Useful methods for Scanner objects */

new Scanner(src) // Makes a new Scanner from the given source.

next () // Returns the next token from the Scanner.

hasNext () // Returns true if there is a token to read.

nextLine () // Returns the next line from the Scanner.

hasNextLine () // Returns true if there is a line left to read.
nextX() // Returns the next token as a X, e.g., Int, Double.
hasNextX () // Returns true if there is a token left and it’s an X.

/*x 4. Useful methods for Random objects */

new Random() // Creates a new random object.

nextInt () // Returns a random int.

nextInt (max) // Returns a random int in the range O to max-1.
nextDouble () // Returns a random double in the range 0.0 to 1.0.
nextBoolean() // Returns a random boolean.

/** 5. Useful methods from the Arrays class */
Arrays.toString(arr) // Returns a formatted String representing arr,
// e.g., [1, 2, 3].
Arrays.equals(arrl, arr2) // Returns true iff arrl is pairwise equal to arr2.

Arrays.copy0f (arr, len) // Returns a copy of arr up to the specified length.
// truncating or padding the new array to meet it.

Arrays.fill(arr, val) // Replaces the elements of arr with val

Arrays.deepToString(arr) // Variants that work with

Arrays.deepEquals(arrl, arr2) // multidimensional arrays.

Notes about this exam:

e Exam #2 covers all the new content introduced since the first exam (chapters 4-7). The
exam is necessarily cumulative — we can’t NOT have a for loop on the exam, for example —
but the questions will focus on the new content.

e The purpose of this exam is to test your algorithmic thinking skills rather than have you
regurgitate facts about computer programming. To prepare for this exam, you should practice
those skills by reviewing homeworks and doing practice problems discussed in section or found
in the text.

e The exam is closed book, closed notes, and closed electronic devices. You may bring a single
8.5 x 11”7 sheet of double-sided notes to help jog your memory.

e In addition to your note sheet, we will include a sheet of commonly-used APIs so that you
do not have to write them down.

e This practice exam introduces you to the types of problems that will be on the real exam.
That way you can spend more time solving problems instead of trying to understand what
the problem asks of you. That being said, while my goal is not to stray far from this format,
the format of the actual exam may change slightly if necessary.

o I strongly recommend that you attempt this practice exam without looking at the answers.
Afterwards, check your work, and then use the usual channels (e.g., Piazza, your TA, or
myself) to resolve any lingering questions that you may have.

Boolean busting machines

1. (5 points) Evalute these Java expressions to their final values.

public static int mystery(int n, int k) {
int r = 0;
if (n > k) {
r =n + k;
} else if (n < k) {
r =n *x k;
} else {
r =n - k;

}
return r;
}
(a) 13 > 4 || true == false —
(b) (3 < 1) Il 1(0==1)) && (14 < 2) —

(c) mystery(3, -5) —

(d) mystery(10, 2) —

It’s a mystery to everyone

2. (15 points) Given the following methods, evaluate the following Java expressions to their final
values.

(a) public static int mysteryl(int n, int k) {
while (2 * n < k) {
n+=n *x 2;
k += 5;
System.out.println(">> " + n + ", " + k);
}

return n + k;

public static boolean mystery2(int m) {
int val = mysteryl(m, m);
return val == 2 * m;

3

i. mysteryl1(5, 10) —

ii. mystery1(2, 50) —

119
iii. mystery2(100) —

(b) public static int[] mystery3(int k) {
int[] arr = new int[k];
for (int i = 0; i < k; i++) {
arr([i] = i+1;
}
mystery4(arr) ;
return arr;

public static void mystery4(int[] arr) {
for (int i = 0; i < arr.length - 1; i++) {
arr[i] = arr[i] * arr[i+1];

}
i. Arrays.toString(mystery3(2)) —

[2, 2]
ii. Arrays.toString(mystery3(5)) —

(12, 6, 12, 20, 51|

Be assertive

3. (15 points) For each of the labeled points in the code fragment below, identify each of the
assertions in the table as being always true, never true, or sometimes true or sometimes false.

public static int mystery(Console in, int d) {
boolean b = true;
int x = 0;

// POINT A
while (b) {
// POINT B
x = in.nextInt();
if (x < 0) {
b = false;
// POINT C
} else {
d += x;
// POINT D
}
}
// POINT E
return d;
}
b == true x>0 d>0
A Always Never Sometimes
B Always Sometimes Sometimes
C Never Never Sometimes
D Always Sometimes Sometimes
E Never Never Sometimes

Nom nom nom

4. (20 points) Write a method processFile that takes a Scanner that is reading from a text file
of a particular format and returns the average age of all students found in the file as an integer.
The file contains a series of student/faculty records in the university, one record per line in the
following format:

<last name> <first name> student <age> <gpa>
<last name> <first name> faculty <department> <age>

where student and faculty are actual tokens in the file to distinguish between a student record
and a faculty record. For example, the following is a possible text file in the correct format:

Dunham Olivia student 19 3.7

Bishop Peter student 18 3.3

Bishop Walter faculty physics 60
Broyles Phillip student 20 3.4
Farnsworth Astrid faculty physics 35

If a Scanner were passed to processFile pointing to this file, then the method would return
(19 + 18 +20)/3 = 19.

public static int processFile(Scanner file) {
int sum = 0;
int count 0;
while (file.hasNextLine()) {
Scanner line = new Scanner(file.nextLine());
line.next(); // last name
line.next(); // first name
if (line.next().equals("student")) {
sum += line.nextInt();
count++;

}

return sum / count;

Array whisperer

5. (20 points) Write a method duplicate that takes an integer array arr and an integer n as
arguments and returns a new integer array that contains n copies of arr laid out end-to-end.
Assume that you are passed a non-null array and n is positive. Here are some example invocations
of duplicate and their results:

Array Return value

n
(11 [2]1[3] 3 | (11021 [3][1][2][3][1][2][3]
5
1

(0] (0] [0] [0] [0] [0]
(11 [2][3][4][5] (11 [2] [3]1[4] [5]

public static int[] duplicate(int[] arr, int n) {
int[] ret = new int[arr.length * n];
for (int i = 0; i < ret.length;) {
for (int j = 0; j < arr.length; j++) {
ret[i++] = arr([jl;
}
}

return ret;

Gonna (try to, again) fly now
6. (25 points)

(a) Write a method rotate that takes an integer array arr and a boolean b as arguments and
changes arr so that its elements are rotated one position to the right if b is true and one
position to the left if b is false. The element that is rotated off the end of the array is copied
to the vacant position at the other end of the wrap. Note that rotate changes its argument
array and does not return a result. Here are some example invocations of rotate and their
results:

Array b Return value
(1102131 | true | [3][1][2]
(11021 [3] | false | [2][3][1]

(0] true [o]

Hint: rotate does two distinct operations based on b, either rotate left or rotate right. Tackle
these two operations independently.

public static void rotate(int[] arr, boolean b) {
if (o) {
int temp = arr[arr.length-1];
for (int i = arr.length-1; i > 0; i--) {

arr[i] = arr[i-1];

}

arr[0] = temp;

} else {

int temp = arr[0];

for (int i = 0; i < arr.length-1; i++) {
arr[i] = arr[i+1];

}

arr [arr.length-1] = temp;

10

(b) Using the rotate method from the previous section, write a method randomRotateWalk
that takes an integer array and a Random object and repeatedly rotates its elements one
position to the left or one position to the right until the array returns to its original con-
figuration. randomRotateWalk should randomly rotate the array once to begin the process.
randomRotateWalk should print out the initial array as it is passed to the and the resulting
array after each random rotation. Here is the sample output of calling randomRotateWalk
with the array [0] [1] [2] [3] [4] [5].

o, 1, 2, 3, 4, 5]
[5, 0, 1, 2, 3, 4]
(4, 5, 0, 1, 2, 3]
[3, 4, 5, 0, 1, 2]
[2, 3, 4, 5, 0, 1]
[3, 4, 5, 0, 1, 2]
[2, 3, 4, 5, 0, 1]
[1, 2, 3, 4, 5, 0]
o, 1, 2, 3, 4, 5]

Hint: Keep in mind that rotate mutates the original array. You will need some way of
remembering the original array so you know when to stop rotating. The Arrays.equals and
Arrays.toString methods will be useful here to compare arrays for equality and petty print
the array in the format above.

public static void randomRotateWalk(int[] arr, Random rand) {
int[] orig = Arrays.copyOf(arr, arr.length);
System.out.println(Arrays.toString(arr));
rotate(arr, rand.nextBoolean());
while (!Arrays.equals(arr, orig)) {
rotate(arr, rand.nextBoolean());
System.out.println(Arrays.toString(arr));

11

