
CIS 110 — Introduction To Computer Programming

October 5th, 2011 — Exam 1

Answer key

Scores:

1

2

3

4

5

6

Total (100 max)

CIS 110 Exam 1 Instructions

• You have 50 minutes to finish this exam. Time will begin when called by a proctor and end
precisely 50 minutes after that time. If you continue writing after the time is called, you will
receive a zero for the exam.

• This exam is closed-book, closed-notes, and closed-computational devices except for a one page
sheet (8.5” by 11”) of double-sided notes.

• When writing code, the only abbreviations you may use are for System.out.println and
System.out.print as follows:

System.out.println −→ S.O.PLN

System.out.print −→ S.O.P

Otherwise all code must be written out as normal.

• Please do not separate the pages of the exam. If a page becomes loose, please make sure to
write your name on it so that we don’t lose it, and use the provided staplers to reattach the
sheet when you turn in your exam.

• If you require extra paper, please use the backs of the exam pages or the extra sheet paper
provided at the end of the exam. Clearly indicate on the question page where the graders
can find the remainder of your work (e.g., ”back of page” or ”on extra sheet”).

• If you have any questions, please raise your hand and an exam proctor will come to answer
them.

• When you turn in your exam, you will be required to show ID. If you forgot to bring your
ID, please talk to an exam proctor immediately.

Good luck, have fun!

1

CIS 110 Exam 1 Cheat Sheet

/** 1. For syntax, look at the format of the code presented in the questions

* (unless otherwise stated, it is all syntactically correct code). */

// class declarations // method declarations

public class <name> { public static <type> <name>(<params>) {

<methods> <statements>

} }

/** 2. Useful methods for String objects */

charAt(index) // Returns the character at the given (zero-based) index.

endsWith(text) // Returns true if the string ends with the given text.

indexOf(character) // Returns the (zero-based) index of the given character.

length() // Returns the length of the string.

startsWith(text) // Returns true if the string starts with the given text.

substring(start, stop) // Returns the characters from the start index to just

// before the stop index

toLowerCase() // Returns a new string with all lower case characters.

toUpperCase() // Returns a new string with all upper case characters.

/** 3. Useful methods for Graphics objects */

drawLine(x1, y1, x2, y2) // Draws a line between (x1, y1) and (x2, y2)

drawOval(x, y, width, height) // Draws the outline of the largest oval that

// fits in the specified rectangle.

drawRect(x, y, width, height) // Draws the outline of the specified rectangle.

drawString(msg, x, y) // Draws the given text with its lower-left

// corner at (x, y)

fillOval(x, y, width, height) // Fills the largest oval that fits in the

// specified rectangle.

fillRect(x, y, width, height) // Fills the outline of the given rectangle.

setColor(color) // Sets the graphics context to use the color.

2

Expression Evaluating Machines

1. (10 points) Evaluate these Java expressions to their final values.

(a) 10 - 5 * 5 * (2 - 6 + 8) −→

-90

(b) 3 / (double) 2 + 3 / 2 + (double) 3 / 2 −→

4.0

(c) (11 / 5 + 11 % 5) % 5 −→

3

(d) 9 - 6 + "-heads-" + 2 * 5 + "-tails-" + (6 / 2) −→

3-heads-10-tails-3

(e) String s = "cis110 rocks";

"!" + s.charAt(2) + s.charAt(8) + ": " + s.length() + "!" −→

!so: 12!

3

Trace You A Loop

2. (10 points) Trace the execution of the following loop by filling in the provided table. Each row
of the table corresponds to the state of the program after executing the line marked HERE. You may
skip any cases of the variables that do not reach execution of the line marked HERE.

for (int i = 1; i <= 2; i++) {

for (int j = 4; j >= -4; j -= 4) {

for (int k = -1; k < 3; k += 2) {

System.out.println(i * j * k); // HERE

}

}

}

i j k Output (each line)

1 4 -1 -4
1 4 1 4
1 0 -1 0
1 0 1 0
1 -4 -1 4
1 -4 1 -4
2 4 -1 -8
2 4 1 8
2 0 -1 0
2 0 1 0
2 -4 -1 8
2 -4 1 -8

4

Method Mystery

3. (15 points) Write the output of this program in the space below.

public class Mystery {

public static String prepend(String s) {

return ":" + s;

}

public static void silly(String x, String y, String z) {

System.out.println(z + ":" + y + ":" + x);

}

public static void main(String[] args) {

silly("hi", "how is the", "weather?");

silly("pokedex " + 25, "weight " + 13.2, "initial " + ’p’);

silly("////", "\"\"\"", "\\\\");

silly("1958", "Silverstone", prepend("Grand V"));

silly(prepend(prepend("0")), "0", prepend("0"));

}

}

weather?:how is the:hi

initial p:weight 13.2:pokedex 25

\\:""":////

:Grand V:Silverstone:1958

:0:0:::0

5

Patterns, Patterns, Patterns

4. (20 points) Consider the following ASCII picture:

@@&-()

@@@@&-&-()

@@@@@@&-&-&-()

@@@@@@@@&-&-&-&-()

@@@@@@@@@@&-&-&-&-&-()

(a) What is the form of each line (i.e., what is the pattern of characters on each line)?

”@”, ”&-”, ”()”

(b) For each pattern of characters you identify, give a formula for the number of occurrences of
each pattern on each line in terms of the row number i. You may choose to number the first
row either 0 or 1.

(With i starting at 0.)

"@" = 2 * (i + 1)

"&~" = i + 1

"()" = 1

(c) Finally, write a method, drawShape() that draws the above diagram in terms of the formulae
that you derived.

public static void drawShape() {

for (int i = 0; i < 5; i++) {

for (int j = 0; j < 2 * (i + 1); j++) {

System.out.print("@");

}

for (int j = 0; j < i + 1; j++) {

System.out.print("&-");

}

System.out.println("()");

}

}

6

Parameterization

5. (20 points)

(a) Write a method, drawFigure, that takes a Graphics object as input and draws the following
figure to that Graphics object.

The figure is anchored at (0, 0), and its overall size is 300× 100. There are two lines, a box,
and a circle:

• The two lines have initial points (0, 0) and (0, 100), and both have length 100.

• The square is positioned right at the endpoints of the lines and has width 100.

• The circle is positioned against the right side of the square and has diameter 100.

public static void drawFigure(Graphics g) {

g.drawLine(0, 0, 100, 0);

g.drawLine(0, 100, 100, 100);

g.drawRect(100, 0, 100, 100);

g.drawOval(200, 0, 100, 100);

}

(Part (b) is on the next page.)

7

(b) Parameterize drawFigure further so that the caller of drawFigure can change the width of the
figure without repositioning it. While the figure changes in width, it should still have height
100 and remain rooted at (0, 0). To do this, you should add one extra parameter to control
the width of the figure.

As an example, if someone calls drawFigure(g, 150):

• The lines will have width 50.

• The square will be positioned at (50, 0), and its width will change appropriately.

• The circle will be positioned at (100, 0), and its width will also change appropriately.

You may either write your parameterized drawFigure method in the space below or change
your answer to part (a) to be parameterized.

(Hint: What is the relationship between the width of the overall figure and the widths of its
subfigures? This value, the subWidth, is important in solving the problem.)

public static void drawFigure(Graphics g, int width) {

int subWidth = width / 3;

g.drawLine(0, 0, subWidth, 0);

g.drawLine(0, 100, subWidth, 100);

g.drawRect(subWidth, 0, subWidth, 100);

g.drawOval(2 * subWidth, 0, subWidth, 100);

}

8

Gonna Fly Now

6. (25 points)

(a) Write a method, printRow(x, y, n) that writes a row of y successive numbers starting from
x to x + y − 1 modded by n. For example, printRow(2, 8, 5) will print out the following
eight numbers starting at two.

2 3 4 0 1 2 3 4

public static void printRow(int x, int y, int n) {

for (int i = x; i < x + y; i++) {

System.out.print(i % n + " ");

}

}

(Part (b) is on the next page.)

9

(b) Use printRow(x, y, n) to write a second method printModTriangles(k, n) that writes
repeated triangles consisting of such rows. The method prints out k rows that make up a
set of repeated triangles where the lengths of each row are also modded by n. For example,
printModTriangles(8, 5) should print:

(0) 0

(1) 1 2

(2) 3 0 1

(3) 2 3 0 1

(4) 2

(5) 3 0

(6) 1 2 3

(7) 0 1 2 3

(Hint: The difficult part is determining what values to pass to printRow(x, y, n). Tackle
each parameter independently based off of the patterns that you see in the above picture.)

public static void printModTriangles(int x, int n) {

int currentValue = 0;

for (int i = 0; i < x; i++) {

System.out.print("(" + i + ") ");

printRow(currentValue, i \% (n-1) + 1, n-1);

currentValue += i + 1;

System.out.println();

}

}

10

Postscript (extra paper)

11

