CIS 110 — Introduction To Computer Programming

October 5th, 2011 — Exam 1

Answer key

Scores:

1
2
3
4
)
6

Total (100 max)

CIS 110 Exam 1 Instructions

You have 50 minutes to finish this exam. Time will begin when called by a proctor and end
precisely 50 minutes after that time. If you continue writing after the time is called, you will
receive a zero for the exam.

This exam is closed-book, closed-notes, and closed-computational devices except for a one page
sheet (8.5” by 117) of double-sided notes.

When writing code, the only abbreviations you may use are for System.out.println and
System.out.print as follows:

System.out.printin — S.O.PLN
System.out.print — S.O.P

Otherwise all code must be written out as normal.

Please do not separate the pages of the exam. If a page becomes loose, please make sure to
write your name on it so that we don’t lose it, and use the provided staplers to reattach the
sheet when you turn in your exam.

If you require extra paper, please use the backs of the exam pages or the extra sheet paper
provided at the end of the exam. Clearly indicate on the question page where the graders
can find the remainder of your work (e.g., "back of page” or ”"on extra sheet”).

If you have any questions, please raise your hand and an exam proctor will come to answer
them.

When you turn in your exam, you will be required to show ID. If you forgot to bring your
ID, please talk to an exam proctor immediately.

Good luck, have fun!

CIS 110 Exam 1 Cheat Sheet

/** 1. For syntax, look at the format of the code presented in the questions

* (unless otherwise stated, it is all syntactically correct code). */
// class declarations // method declarations
public class <name> { public static <type> <name>(<params>) {
<methods> <statements>
} }

/** 2. Useful methods for String objects */

charAt (index) // Returns the character at the given (zero-based) index.
endsWith(text) // Returns true if the string ends with the given text.
index0f (character) // Returns the (zero-based) index of the given character.
length() // Returns the length of the string.

startsWith(text) // Returns true if the string starts with the given text.

substring(start, stop) // Returns the characters from the start index to just
// before the stop index

toLowerCase () // Returns a new string with all lower case characters.

toUpperCase () // Returns a new string with all upper case characters.

/** 3. Useful methods for Graphics objects */

drawLine(x1, y1, x2, y2) // Draws a line between (x1, yl) and (x2, y2)
drawOval(x, y, width, height) // Draws the outline of the largest oval that
// fits in the specified rectangle.
drawRect (x, y, width, height) // Draws the outline of the specified rectangle.
drawString(msg, x, y) // Draws the given text with its lower-left
// cormer at (x, y)
fillOval(x, y, width, height) // Fills the largest oval that fits in the
// specified rectangle.
fillRect(x, y, width, height) // Fills the outline of the given rectangle.
setColor (color) // Sets the graphics context to use the color.

Expression Evaluating Machines

1. (10 points) Evaluate these Java expressions to their final values.

(a) 10 - 5 x5 * (2 -6 +8) —

(b) 3 / (double) 2 + 3 / 2 + (double) 3 / 2 —

() (11 / 5+ 11 % 5) % 5 —

(d) 9 - 6 + "-heads-" + 2 * 5 + "-tails-" + (6 / 2) —

’ 3-heads-10-tails-3 ‘

(e) String s = "cis110 rocks";
"I" + g.charAt(2) + s.charAt(8) + ": " + s.length() + "I!" —

Grading notes: We awarded all-or-nothing points for each part of this question.

mastakes included
(a) Forgetting the .07 on part (b) since the result is a double and

(b) Off-by one errors with charAt in part (e).

Common

Trace You A Loop

2. (10 points) Trace the execution of the following loop by filling in the provided table. Each row
of the table corresponds to the state of the program after executing the line marked HERE. You may
skip any cases of the variables that do not reach execution of the line marked HERE.

for (int i = 1; i <= 2; i++) {
for (int j = 4; j >= -4; j —=4) {
for (int k¥ = -1; k < 3; k += 2) {
System.out.println(i * j * k); // HERE

}
}
}
i j k Output (each line)
1 4 -1 -4
1 4 1 4
1 0 -1 0
1 0 1 0
1 -4 -1 4
1 -4 1 -4
2 4 -1 -8
2 4 1 8
2 0 -1 0
2 0 1 0
2 -4 -1 8
2 -4 1 -8

Grading notes: We grouped the tests into buckets based off of the patterns that emerged:
4+9: Math errors or other minor mistakes (e.g., many people had 1 %0 %2 = 2).

+8: Misinterpretation of a bound or increment/decrement (e.g., if the table was correct if we
assume j < 4 instead of j <=4

+7: Correct output is there, but there is extra output (e.g., from looping too many times).
+5: Correctly interpreted outer for-loop but the inner for-loops are wrong.

+3: Incremented all three loops at the same same (so i, j, and k all stepped together on each
iteration instead of just one of them).

+1: Attempt at the problem but not much else correct.

Method Mystery

3. (15 points) Write the output of this program in the space below.

public class Mystery {
public static String prepend(String s) {
return ":" + s;

}

public static void silly(String x, String y, String z) {
System.out.println(z + ":" + y + ":" + x);

}

public static void main(String[] args) {
silly("hi", "how is the", "weather?");
silly("pokedex " + 25, "weight " + 13.2, "initial " + ’p’);
silly("////7", "\"\"\"", "\\\\");
silly("1958", "Silverstone", prepend("Grand V"));
silly(prepend(prepend("0")), "0", prepend("0"));

weather?:how is the:hi
initial p:weight 13.2:pokedex 25

s/ /)
:Grand V:Silverstone:1958
:0:0:::0

Grading notes: We assigned three points to each of the five method calls and subtracted points
for each thing that we found wrong. Most commonly, forgetting a backslash in the third method call
or a colon in the fifth resulted in a point lost.

Patterns, Patterns, Patterns

4. (20 points) Consider the following ASCII picture:

Qe&-()

@QQeO&-&- ()
QQeEAB&-&-&- ()
00QEOQCQ&—&-&-&- ()
Q0RO -&—&-&—&- ()

(a) What is the form of each line (i.e., what is the pattern of characters on each line)?

9 @’7 b &_7’ 2 ()77
))

(b) For each pattern of characters you identify, give a formula for the number of occurrences of
each pattern on each line in terms of the row number i. You may choose to number the first
row either 0 or 1.

(With i starting at 0.)
gn = 2 x (i + 1)
gt o= i+ 1

n()u =1

(c) Finally, write a method, drawShape () that draws the above diagram in terms of the formulae
that you derived.

public static void drawShape() {
for (int i = 0; i < 5; i++) {

for (int j =0; j<2* (14 + 1); j++) {
System.out.print("@");

}

for (int j =0; j < i+ 1; j++) {
System.out.print ("&-");

}

System.out.println("(");

Grading notes: Part (a) was 4 points. We were extremely lenient, giving anyone that showed
evidence that they understood the line was composed of spaces @s, &-s, and ()s full credit.

Part (b) was 6 points, 2 points each of the formulae you should’ve produced. We accepted any
formulae that worked, e.g., grouping the ampersands into 2s vs. 1s.

Part (¢) was 10 points. We took away a point for each mistake we found, in particular, for getting
the boundaries of the loops wrong, forgetting to print out certain characters such as the parentheses,
or not having a function header.

Parameterization
5. (20 points)

(a) Write a method, drawFigure, that takes a Graphics object as input and draws the following
figure to that Graphics object.

The figure is anchored at (0,0), and its overall size is 300 x 100. There are two lines, a box,
and a circle:

e The two lines have initial points (0,0) and (0,100), and both have length 100.
e The square is positioned right at the endpoints of the lines and has width 100.

e The circle is positioned against the right side of the square and has diameter 100.

public static void drawFigure(Graphics g) {
g.drawLine(0, 0, 100, 0);
g.drawLine (0, 100, 100, 100);
g.drawRect (100, 0, 100, 100);
g.drawOval (200, 0, 100, 100);

(Part (b) is on the next page.)

(b) Parameterize drawFigure further so that the caller of drawFigure can change the width of the

figure without repositioning it. While the figure changes in width, it should still have height
100 and remain rooted at (0,0). To do this, you should add one extra parameter to control
the width of the figure.

As an example, if someone calls drawFigure(g, 150):

e The lines will have width 50.

e The square will be positioned at (50,0), and its width will change appropriately.

e The circle will be positioned at (100, 0), and its width will also change appropriately.
You may either write your parameterized drawFigure method in the space below or change
your answer to part (a) to be parameterized.

(Hint: What is the relationship between the width of the overall figure and the widths of its
subfigures? This value, the subWidth, is important in solving the problem.)

public static void drawFigure(Graphics g, int width) {
int subWidth = width / 3;
g.drawLine(0, O, subWidth, 0);
g.drawLine (0, 100, subWidth, 100);
g.drawRect (subWidth, 0, subWidth, 100);
g.drawOval(2 * subWidth, O, subWidth, 100);

Grading notes: Part (a) was 6 points given as follows:

+2
+2
+2

Correct method declaration.
Made /4 correct method calls.

Correct parameters passed to those method calls.

Part (b) was given 14 points as follows:

+2
+2
+3
+1
+2
+2
+2

Correct method declaration.

Made /4 correct method calls.

Includes the concept of subWidth (i.e., subWidth = width / 3) into their code.
Correct starting x/y coordinates for drawLines.

Correct ending © coordinates for drawLines.

Correct ending y-coordinate for drawLine and heights for drawRect and drawOval.

Correct widths for drawRect and drawOval.

Gonna Fly Now
6. (25 points)

(a) Write a method, printRow(x, y, n) that writes a row of y successive numbers starting from
z to x +y — 1 modded by n. For example, printRow(2, 8, 5) will print out the following
eight numbers starting at two.

23401234

public static void printRow(int x, int y, int n) {
for (int i = x; 1 < x + y; i++) {
System.out.print(i % n + " ");

(Part (b) is on the next page.)

(b)

Use printRow(x, y, n) to write a second method printModTriangles(k, n) that writes
repeated triangles consisting of such rows. The method prints out k rows that make up a
set of repeated triangles where the lengths of each row are also modded by n. For example,
printModTriangles(8, 5) should print:

(0) 0
(112
(2) 301
32301
(4) 2
(5) 30
() 123
(1) 0123

(Hint: The difficult part is determining what values to pass to printRow(x, y, n). Tackle
each parameter independently based off of the patterns that you see in the above picture.)

public static void printModTriangles(int x, int n) {
int currentValue = 0;
for (int i = 0; i < x; i++) {
System.out.print("(" + i + ") ");
printRow(currentValue, i \% (n-1) + 1, n-1);
currentValue += i + 1;
System.out.println();

Grading notes: Woo boy. We were well-aware that this question was the hardest one on the test.
So we shifted most of the points to part (a) and looked to give as much patial credit as possible.
Part (a) was 15 points. This question was very difficult to do without mod, so we broke up the
points accordingly.

If mod was used to generate output, you started at 15 pts:

-1: Incorrect method header.

-1: Multiple syntazx errors.

-1: Missing space between numbers in output.

-2: Loop variable is initialized wrong.

-2: Loop bound is wrong.

-3: Extra unnecessary for-loops.

-2: Stringifying mod (i.e., something like a string 75 % 3”
-3: Hardcoded in 5 into the method.

-2: Unnecessary return statements.

-2: Improper scoping of variables.

10

e [f mod was not used to generate output, you started at 0 pts:

+1: Method header correct.
+1: Having a for-loop.
+1: Printing something.
+1: Printing with spaces.

+2: Using loop variables to generate output.
Part (b) was given 10 points.
+1: Having parameters and a correct method header.
+1: Having a for-loop.
+1: Printing out the number 7(#)” each iteration.
+1: Calling printRow
+2: Passing correct first parameter to printRow.
+2: Passing correct second parameter to printRow.
+2: Passing correct third parameter to printRow.
+1: Printing a newline at the end of each iteration of the loop.

For part (b), we accepted either n or n — 1 for the various parameter calls. Technically the
example works as given (corresponding to n — 1) but our intention was for that example to be
printModTriangles (8, 4) which would make the math easier (corresponding to n).

11

Postscript (extra paper)

12

