
21 Metatheory of Recursive Types

In Chapter 20 we saw two alternative presentations of recursive types: equi-
recursive types, which are definitionally equivalent to their unfoldings, and
iso-recursive types, where this equivalence is explicitly witnessed by fold
and unfold terms. In this chapter, we develop the theoretical foundations
of typecheckers for equi-recursive types. (Implementing iso-recursive types
is comparatively straightforward.) We will deal with a system including both
recursive types and subtyping, since these are often combined in practice.
A system with equi-recursive types but not subtyping would be only a little
simpler, since we would still need to check equivalence of recursive types.

We saw in Chapter 20 that subtyping for equi-recursive types can be un-
derstood intuitively in terms of infinite subtyping derivations over infinite
types. Our job here is to make these intuitions precise using the mathematical
framework of coinduction, and to draw a precise connection between infinite
trees and derivations and the finite representations manipulated by an actual
subtyping algorithm.

We begin in §21.1 by reviewing the basic theory of inductive and coinduc-
tive definitions and their associated proof principles. §21.2 and §21.3 instan-
tiate this general theory for the case of subtyping, defining both the familiar
inductive subtype relation on finite types and its coinductive extension to in-
finite types. §21.4 makes a brief detour to consider some issues connected
with the rule of transitivity (a notorious troublemaker in subtyping systems,
as we have seen). §21.5 derives simple algorithms for checking membership
in inductively and co-inductively defined sets; §21.6 considers more refined
algorithms. These algorithms are applied to subtyping for the important spe-
cial case of “regular” infinite types in §21.7. §21.8 introduces µ-types as a
finite notation for representing infinite types and proves that the more com-
plex (but finitely implementable) subtype relation on µ-types corresponds to

The system studied in this chapter is the simply typed calculus with subtyping (Figure 15-1),
products (11-5), and equi-recursive types. The corresponding checker is equirec.



282 21 Metatheory of Recursive Types

the ordinary coinductive definition of subtyping between infinite types. §21.9
proves termination of the subtyping algorithm for µ-types. §21.10 compares
this algorithm with another algorithm due to Amadio and Cardelli. §21.11
briefly discusses iso-recursive types.

21.1 Induction and Coinduction

Assume we have fixed some universal set U as the domain of discourse for
our inductive and coinductive definitions.U represents the set of “everything
in the world,” and the role of an inductive or coinductive definition will be to
pick out some subset of U. (Later on, we are going to choose U to be the
set of all pairs of types, so that subsets of U are relations on types. For the
present discussion, an arbitrary set U will do.)

21.1.1 Definition: A function F ∈ P(U) → P(U) is monotone if X ⊆ Y implies
F(X) ⊆ F(Y). (Recall that P(U) is the set of all subsets of U.) !

In the following, we assume that F is some monotone function on P(U).
We often refer to F as a generating function.

21.1.2 Definition: Let X be a subset of U.

1. X is F-closed if F(X) ⊆ X.

2. X is F-consistent if X ⊆ F(X).

3. X is a fixed point of F if F(X) = X. !

A useful intuition for these definitions is to think of the elements of U as
some sort of statements or assertions, and of F as representing a “justifica-
tion” relation that, given some set of statements (premises), tells us what new
statements (conclusions) follow from them. An F-closed set, then, is one that
cannot be made any bigger by adding elements justified by F—it already con-
tains all the conclusions that are justified by its members. An F-consistent
set, on the other hand, is one that is “self-justifying”: every assertion in it is
justified by other assertions that are also in it. A fixed point of F is a set that
is both closed and consistent: it includes all the justifications required by its
members, all the conclusions that follow from its members, and nothing else.

21.1.3 Example: Consider the following generating function on the three-element
universe U = {a, b, c}:

E1(∅) = {c} E1({a, b}) = {c}
E1({a}) = {c} E1({a, c}) = {b, c}
E1({b}) = {c} E1({b, c}) = {a, b, c}
E1({c}) = {b, c} E1({a, b, c}) = {a, b, c}



21.1 Induction and Coinduction 283

There is just one E1-closed set—{a, b, c}—and four E1-consistent sets—∅,
{c}, {b, c}, {a, b, c}.
E1 can be represented compactly by a collection of inference rules:

c
c
b

b c
a

Each rule states that if all of the elements above the bar are in the input set,
then the element below is in the output set. !

21.1.4 Theorem [Knaster-Tarski (Tarski, 1955)]:

1. The intersection of all F-closed sets is the least fixed point of F .

2. The union of all F-consistent sets is the greatest fixed point of F . !

Proof: We consider only part (2); the proof of part (1) is symmetric. Let C =
{X |X ⊆ F(X)} be the collection of all F-consistent sets, and let P be the
union of all these sets. Taking into account the fact that F is monotone and
that, for any X ∈ C, we know both that X is F-consistent and that X ⊆ P ,
we obtain X ⊆ F(X) ⊆ F(P). Consequently, P =

⋃
X∈C X ⊆ F(P), i.e. P is

F-consistent. Moreover, by its definition, P is the largest F-consistent set.
Using the monotonicity of F again, we obtain F(P) ⊆ F(F(P)). This means,
by the definition of C, that F(P) ∈ C. Hence, as for any member of C, we
have F(P) ⊆ P , i.e. P is F-closed. Now we have established both that P is the
largest F-consistent set and that P is a fixed point of F , so P is the largest
fixed point. !

21.1.5 Definition: The least fixed point of F is written µF . The greatest fixed point
of F is written νF . !

21.1.6 Example: For the sample generating function E1 shown above, we have µE1 =
νE1 = {a, b, c}. !

21.1.7 Exercise ["]: Suppose a generating function E2 on the universe {a, b, c} is
defined by the following inference rules:

a
c
b

a b
c

Write out the set of pairs in the relation E2 explicitly, as we did for E1 above.
List all the E2-closed and E2-consistent sets. What are µE2 and νE2? !



284 21 Metatheory of Recursive Types

Note that µF itself is F-closed (hence, it is the smallest F-closed set) and
that νF is F-consistent (hence, it is the largest F-consistent set). This obser-
vation gives us a pair of fundamental reasoning tools:

21.1.8 Corollary [of 21.1.4]:

1. Principle of induction: If X is F-closed, then µF ⊆ X.

2. Principle of coinduction: If X is F-consistent, then X ⊆ νF . !

The intuition behind these principles comes from thinking of the set X as
a predicate, represented as its characteristic set—the subset of U for which
the predicate is true; showing that property X holds of an element x is the
same as showing that x is in the set X. Now, the induction principle says that
any property whose characteristic set is closed under F (i.e., the property is
preserved by F) is true of all the elements of the inductively defined set µF .

The coinduction principle, on the other hand, gives us a method for es-
tablishing that an element x is in the coinductively defined set νF . To show
x ∈ νF , it suffices to find a set X such that x ∈ X and X is F-consistent. Al-
though it is a little less familiar than induction, the principle of coinduction is
central to many areas of computer science; for example, it is the main proof
technique in theories of concurrency based on bisimulation, and it lies at the
heart of many model checking algorithms.

The principles of induction and coinduction are used heavily throughout
the chapter. We do not write out every inductive argument in terms of gen-
erating functions and predicates; instead, in the interest of brevity, we often
rely on familiar abbreviations such as structural induction. Coinductive argu-
ments are presented more explicitly.

21.1.9 Exercise [Recommended, """]: Show that the principles of ordinary induc-
tion on natural numbers (2.4.1) and lexicographic induction on pairs of num-
bers (2.4.4) follow from the principle of induction in 21.1.8. !

21.2 Finite and Infinite Types

We are going to instantiate the general definitions of greatest fixed points
and the coinductive proof method with the specifics of subtyping. Before we
can do this, though, we need to show precisely how to view types as (finite or
infinite) trees.

For brevity, we deal in this chapter with just three type constructors: →, × ,
and Top. We represent types as (possibly infinite) trees with nodes labeled by


