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Abstract
Binary type inference is a core research challenge in binary
program analysis and reverse engineering. It concerns iden-
tifying the data types of registers and memory values in a
stripped executable (or object file), whose type information is
discarded during compilation. Current methods rely on either
manually crafted inference rules, which are brittle and de-
mand significant effort to update, or machine learning-based
approaches that suffer from low accuracy.

In this paper we propose TYGR, a graph neural network
based solution that encodes data-flow information for infer-
ring both basic and struct variable types in stripped binary
programs. To support different architectures and compiler
optimizations, TYGR was implemented on top of the ANGR
binary analysis platform and uses an architecture-agnostic
data-flow analysis to extract a graph-based intra-procedural
representation of data-flow information.

We noticed a severe lack of diversity in existing binary
executables datasets and created TYDA, a large dataset of di-
verse binary executables. The sole publicly available dataset,
provided by STATEFORMER, contains only 1% of the total
number of functions in TYDA. TYGR is trained and evaluated
on a subset of TYDA and generalizes to the rest of the dataset.
TYGR demonstrates an overall accuracy of 76.6% and a struct
type accuracy of 45.2% on the x64 dataset across four opti-
mization levels (O0-O3). TYGR outperforms existing works
by a minimum of 26.1% in overall accuracy and 10.2% in
struct accuracy.

1 Introduction

Decompilation, the process of transforming a compiled pro-
gram to a higher-level language such as C, plays a crucial role
in the analysis of computer security threats, as it provides a
deep understanding of the behavior of compiled programs.
However, decompiled code tends to offer less information
compared to the original source code. Many abstractions and

* The first two authors contributed equally to this paper.

constructs such as variable types, comments, and control-flow
structures are discarded during compilation, posing a chal-
lenge for reverse engineers engaged in program analysis.

Type inference is a major opportunity to significantly im-
prove the output of decompilation [20]. The precise infer-
ence of types in binary code has many applications, including
binary reverse engineering, malware analysis, vulnerability
discovery on binary code [11], software patching, binary re-
hosting, and other security-critical applications [8, 19, 47].
However, automated and precise binary type inference is chal-
lenging [31, 68] due to the lack of high-level abstractions and
the rich variety and sophistication of compiler optimizations
and hardware architectures [55].

Existing binary type inference solutions can be broadly
classified into three categories: (1) Rule- and heuristic-
based solutions (e.g., type inference in IDA and Ghidra).
(2) constraint-solving-based solutions (e.g., TIE [35], RE-
TYPD [42], and OSPREY [70]). (3) machine-learning-based
solutions (e.g., DEBIN [32], STATEFORMER [45], TYPEM-
INER [38], and DIRTY [10]). Our work is motivated by
three key challenges that the state-of-the-art techniques face:
(1) Low accuracy in inferred types on stripped binaries: Even
the best solution only achieves an accuracy of 55.7% during
evaluation. (2) Composite struct type prediction: Most of the
existing solutions either do not predict struct member types or
partially support member prediction. (3) Limited architectural
and optimization level support: Many solutions, especially
heuristic-based and constraint-based ones, only support bina-
ries on one or a limited number of architectures and compiler
optimization levels. This is because generalizing rules, heuris-
tics, and constraint-solving methods to a diverse set of binaries
is difficult.

In this paper, we present TYGR, a machine-learning-based
binary type inference technique that assists binary reverse
engineers by inferring types for registers and memory loca-
tions with a high accuracy. TYGR lifts binary code into VEX
IR [41], an intermediate representation (IR) with a wide ar-
chitecture support, runs a light-weight data-flow analysis on
each function to collect information about how each variable

1



is accessed, generates a graph-based representation of data-
flow information, and finally trains a model based on Graph
Neural Networks (GNN) [50] for type inference.

To strike a balance between scalability and accuracy, TYGR
employs a novel graph-based intra-procedural representation
of the data-flow information. Because the representation is
constructed on a per-function basis, TYGR scales to large, real-
world binaries. This representation is acceptable to GNNs, a
deep neural network model that is well-suited for predicting
rich properties of graph-structured data [61]. To the best of
our knowledge, TYGR is the first to demonstrate the effective
application of GNNs to the problem of binary type inference.
Particularly, we demonstrate that they can adequately tolerate
missing inter-procedural information, thereby allowing data-
flow analysis to scale.

Our evaluation revealed that existing datasets contain many
duplicates. Prior works [44, 56] also made this observation.
For instance, recent work by Pal et al., [44] found that 52%
of functions in the DIRT dataset are duplicates. Similarly, we
found that STATEFORMER dataset has an average of 90% du-
plicate functions. Such high percentages of duplicates make
these datasets unsuitable for properly evaluating learning tech-
niques. To handle this, we created TYDA, a deduplicated bi-
naries dataset built from Gentoo and Debian packages for five
architectures (x64, x86, AArch64, Arm32, and Mips) across
four optimization levels (O0, O1, O2, and O3).

We implement TYGR on top of the ANGR binary analy-
sis framework [55]. Our evaluation on TYDA dataset shows
that TYGR has an overall type prediction accuracy of 76.6%
and struct type prediction accuracy of 45.2%—outperforming
existing state-of-the-art techniques by 10.2% to 26.1%.

Contributions. This paper makes the following contributions:

• We propose a novel graph-based representation of data-flow
information that allows a synergistic combination of a data-
flow analysis and a graph neural network model to balance
scalability and accuracy.

• We employed innovative techniques to construct a new
dataset, incorporating binaries from x64, x86, AArch64,
Arm32 and Mips architectures. This dataset is notably larger
and more expansive compared to existing datasets.

• We implement TYGR, a system that uses the GNN model
that is trained on a large dataset of binary functions to
infer types of program variables in unseen functions from
stripped binaries.

• We demonstrate the effectiveness of TYGR by extensively
evaluating it on a subset of TYDA. TYGR demonstrates an
overall accuracy of 76.6 % and a struct type accuracy of
45.2% on the x64 dataset across four optimization levels
(O0-O3). TYGR outperforms existing works by a minimum
of 26.1% in overall accuracy and 10.2% in struct accuracy.

In the spirit of open science, we release our research artifacts
at https://github.com/sefcom/TYGR.

2 Background

Before diving into the technical details of TYGR, we will
first present necessary background knowledge for readers on
binary reverse engineering, binary type inference, and GNNs.

2.1 Binary Reverse Engineering

Binary reverse engineering is the process of understanding
a program without access to, or only having limited access
to its source code. Reverse engineers analyze binaries to
understand the behaviors or provenance of malware [21, 65],
discover vulnerabilities in binaries [39], and mitigate defects
in legacy software [53]. In most cases, debug symbols are not
available to reverse engineers; They are forced to manually
recover lost semantic information, such as variable locations,
names, and types, during reverse engineering.

2.2 Type Inference on Binaries

Binary type inference is the automated process of reconstruct-
ing source-level type information, e.g., types of local variables
and function arguments, from untyped byte-addressed mem-
ory locations and registers. It is challenging because most in-
formation is discarded during compilation unless debug sym-
bols are preserved. As shown in Table 1, existing binary type
inference solutions can be broadly classified into three cate-
gories based on their core techniques: (1) Rule- and heuristic-
based type inference solutions, (2) constraint-solving-based
solutions, (3) machine-learning-based solutions.

A key difference between these solutions is if they sup-
port type inference of structs and struct members (or struct
layouts). Inferring struct members and their types requires
complex and accurate reasoning and fine-grained flow in-
formation [8], which is hard to gain during static analysis.
Most non-constraint-based inference techniques (i.e., top and
bottom row groups) do not predict struct member types. RE-
WARDS [37] and HOWARD [57], which do predict struct mem-
ber types, use dynamic traces to get precise offset information.
However, as with any dynamic techniques, they suffer from
low completeness: they only support assembly code that is
reachable during execution. Therefore, we make a design de-
cision for TYGR to not use dynamic traces and not infer struct
members.

2.3 Graph Neural Networks

Graph Neural Network (GNN) is a deep neural network ar-
chitecture that is well-suited for predicting rich properties of
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Table 1: A qualitative comparison among existing binary type inference techniques. All techniques support inferencing primitive
types, which are omitted in this table. “Struct,” “Struct Ptrs,” and “Struct Members” refer to whether each technique can
automatically infer such information. IDA and Ghidra only support manually specifying struct types to variables and perform
extremely limited automated type inference of structs. TypeMiner does not attempt to recover the complete struct layout or types
of all struct members. DIRTY only predicts types in its vocabulary and does not support predicting structs that did not appear in
its training set.

Category Technique Input Completeness Struct Types Inference Support Multi-arch.
SupportStruct Struct Ptrs Struct Members

Rules and Heuristics

IDA [33] Binary High ✗ ✗ ✗ ✓
GHIDRA [1] Binary High ✗ ✗ ✗ ✓

REWARDS [37] Dyn. Traces Low ✓ ✓ ✓ ✗
HOWARD [57] Dyn. Traces Low ✓ ✓ ✓ ✗

Type Constraint Solving
TIE [35] Binary High ✓ ✓ ✓ ✗

RETYPD [42] Binary High ✓ ✓ ✓ ✗
OSPREY [70] Binary High ✓ ✓ ✓ ✗

Machine Learning

DEBIN [32] Disassembly High ✓ ✗ ✗ ✗
TYPEMINER [38] Dyn. Traces Low ✓ ✓ ✗ ✗

STATEFORMER [45] Runtime Values High ✓ ✓ ✗ ✓
DIRTY [10] Decompilation High ✓ ✓ ✗ ✗

TYGR Binary High ✓ ✓ ✓ ✓

graph-structured data [61], through a procedure called mes-
sage passing. GNNs have been used for many program un-
derstanding and analysis tasks, such as identifying variable
misuses in C# programs [4], localizing and repairing bugs in
JavaScript code [18], predicting types in Python programs [3],
and detecting code clones [62]. To the best of our knowledge,
TYGR is the first to demonstrate the effective application of
GNNs to the problem of binary type inference.

3 Overview

In this section, we first define the binary type inference prob-
lem. We then provide an overview of TYGR’s architecture,
highlighting key design choices that enable it to achieve pre-
cise and scalable type inference on binary code.

3.1 Binary Type Inference

We consider the problem of mapping binary-level variables to
source-level types. Specifically, we focus on function param-
eters and local variables, which are crucial for understanding
the behavior and intent of the function—and are thus of inter-
est to reverse engineering. We illustrate our objective with an
example in Figure 1, which shows a C function and its assem-
bly code extracted from an x64 binary compiled with GCC
using optimization level O0. In practice, only the binary is
available, but inferring types for data that directly correspond
to source-level variables is helpful for understanding the in-
tent of the function, and perhaps even extracting a faithful
decompilation. At the binary level, local variables are typ-
ically stored at stack offsets. For instance, the stack offset
-0x30(%rbp) corresponds to name_len and -0x38(%rbp)
corresponds to ext_len.

Our goal is to predict fine-grained type information in the
form of C types, such as int32, uint64, and struct*. These
types are familiar to reverse engineers with experience in
popular reverse engineering tools (e.g., IDA). We treat type
inference as a classification problem and use a fixed subset
of primitive types. While C types may be arbitrarily complex,
our finite subset is expressive enough to cover over 97.1%
types that arise in our large dataset.

It is worth noting that existing machine learning-based type
inference techniques are all type prediction techniques. The
crucial difference between type inference and type prediction
is that type prediction techniques only predict types that are
in the vocabulary while type inference may output new types
that are not in the vocabulary. This difference matters most
in inferring struct types, where existing machine learning-
based solutions fail to predict struct shapes or types for struct
members (DEBIN and STATEFORMER), or can only predict
known struct types (DIRTY), which severely limits their use
in revese engineering tasks. TYGR supports predicting struct
shapes and member types, which essentially makes TYGR a
type inference technique.

3.2 TYGR Architecture
Figure 2 shows an overview of TYGR. A key goal of TYGR
is architecture independence over the input binary. Therefore,
TYGR uses VEX IR [41], an architecture-agnostic IR for
binary code in many different architectures.
Importance of Data-flow Information. Data-flow informa-
tion is highly relevant for type inference. This is evident in tra-
ditional constraint-based type inference techniques wherein
the typing constraints encode such information [8, 35, 42].
However, these methods are often limited by the constraint-
solving step, which prevents them from effectively scaling to
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int file_has_ext(char* file_name , char* file_ext) {
char* ext = file_ext;
if (*file_name) {
while (*ext) {

int name_len = strlen(file_name);
int ext_len = strlen(ext);
if (name_len >= ext_len) {
char* a = file_name + name_len - ext_len;
char* b = ext;
while (*a && toupper(*a++) == toupper(*b++));
if (!*a) return 1;

}
ext += ext_len + 1;

}
}
return 0;

}

...
53: mov -0x30(%rbp),%eax
56: movslq %eax,%rdx
59: mov -0x2c(%rbp),%eax
5c: cltq
5e: sub %rax ,%rdx
61: mov -0x38(%rbp),%rax
65: add %rdx ,%rax
68: mov %rax ,-0x20(%rbp)
6c: mov -0x28(%rbp),%rax
70: mov %rax ,-0x18(%rbp)
74: nop
...

-0x18 (%rbp): char*
-0x20 (%rbp): char*
-0x28 (%rbp): char*
-0x2c (%rbp): int32
-0x30 (%rbp): int32
-0x38 (%rbp): char*
-0x40 (%rbp): char*

Figure 1: Top: A C function that checks file extensions. Bot-
tom left: The disassembly abstract of the function in compiled
x64 binary. Bottom right: Type predictions for variables at
their corresponding stack offsets.

large binary applications. An attractive work-around is to em-
ploy machine learning. TYGR thereby uses a model to learn
the data-flow patterns in binaries and outputs predicted types.
To integrate classic data-flow analysis and modern machine
learning, we must design a representation for typing infor-
mation that is both easy to extract and suitable for machine
learning.
Representing Data-flow Information. Our key insight is
to design a graph-based intra-procedural representation of
data-flow information. First, constraint-encoded data-flow in-
formation is also naturally modeled through graphs, and in
fact light-weight data-flow graphs are easy and efficient to ac-
quire using ANGR. Moreover, modern graph neural networks
(GNNs) are remarkably well-suited to learning and approx-
imating the latent semantics of graph-structured data. This
motivates the central data structure of TYGR, which is an effi-
ciently constructed and information-rich graph that explicitly
marks the derivation, usage, and location of data-flow through-
out program execution. In short, we use ANGR to generate
function-level data-flow graphs that are fed to a graph neural
network. The graph neural network then generates a continu-
ous embedding of the data-flow graphs that approximate the
underlying typing semantics.
Inference as Classification. We model type inference as a
classification problem [48], in which we classify an entity as
one of the finite C-level types. Although the possible types
are, in principle, arbitrarily many, we observe that selecting a

much smaller range of commonly seen types already encom-
passes a large portion of those that exist in the wild. Therefore,
rather than incorporating the full complexity of structured pre-
diction, the formulation of type inference as a classification
problem suffices for binaries.

TYGR’s output is a mapping of binary-level variables to
their respective C-level types. It is easily interpretable as this
closely matches the type systems of popular tools like IDA
and GHIDRA, and is therefore also in a format that is easy to
integrate with existing analysis loops.

4 Methodology

In this section we present TYGR’s approach to binary type
inference as a machine learning problem.

4.1 The VEX IR
TYGR first lifts the input binary function into VEX IR using
the ANGR binary analysis framework [55]. Figure 3 shows
how TYGR converts a few lines of x64 binary assembly into
their corresponding VEX statements. The core semantics of
VEX IR center around accesses (reads and writes) to registers,
memory locations, and temporary variables (e.g., t2 and t6).
Temporary variables are a VEX-specific convention to enforce
static-single assignment form [15].

4.2 Data-Flow Analysis
We next discuss how TYGR uses data-flow analysis to gen-
erate graphs that capture the relevant information for type
inference. Figure 4 shows the function foo and its control-
flow graph (CFG). Depending on the parameter a, either path
P1 or P2 will be taken, which will appropriately modify the
values of the two local stack variables b and p.

Our goal is to infer the types of a, b, p. To do this we aim
to generate information-rich data-flow graphs as shown in
Figure 5. These graphs convey how variables derive and use
data during execution, and capture information for a GNN to
infer types. As a high-level overview, our strategy for data-
flow analysis comprises two steps:
Step 1. Perform program execution along different non-cyclic
paths in the CFG of a function to generate a data-flow graph
for each variable along each path. Each path is then associated
with a collection of variable-level data-flow graphs (Figure 5,
left).
Step 2. Aggregate the variable-level data-flow graphs of both
paths into a function-level data-flow graph (Figure 5, right).
This in turn is passed to the training stage of TYGR’s pipeline.

4.2.1 Exploring the Control-Flow Graph

TYGR explores all nodes and edges in the CFG of a function
and inspects the read-from and written-to locations in each IR
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Figure 2: The pipeline of TYGR. Binaries are first converted to VEX IR followed by data-flow analysis to yield a data-flow graph
for each function. Each such graph is then passed to a graph neural network which yields a continuous representation that aims
to capture the semantic information of the function. This representation is then used to predict a type for each variable present.

x86

x64

MIPS

5e: sub %rax, %rdx
61: mov -0x38(%rbp), %rax
65: add %rdx, %rax
68: mov %rax, -0x20(%rbp)

PPC, STM32, etc.

...
------ IMark(0x5e, 3, 0) ------
t2 = Sub64(t21, t28)
PUT(rdx) = t2
PUT(rip) = 0x0061
------ IMark(0x61, 4, 0) ------ 
t31 = Add64(t18, 0xffffffffffffffc8) 
t33 = LDle:I64(t31)
------ IMark(0x65, 3, 0) ------
t6 = Add64(t33, t2)
PUT(rip) = 0x0068
------ IMark(0x68, 4, 0) ------ 
t34 = Add64(t18, 0xffffffffffffffe0) 
STle(t34) = t6
PUT(rip) = 0x00006c
...

Binary 
(under different architectures) VEX IR

Figure 3: Binary to VEX IR conversion for offset 0x5e–0x68
of the function in Figure 1. Note that all architecture-specific
side effects (e.g., changing rip in x64) are explicitly encoded
in VEX IR.

statement. During the exploration, TYGR extracts variable-
level data-flow graphs that captures the value at each location.

Our key insight is that it suffices to evaluate each path once.
This is because how the binary code in a block uses data does
not change when it runs for more than once. Another insight
is that we can completely disregard the feasibility of each
branch and forcibly explore both branches of each branch
condition. We are only interested in how the binary code uses
data at each location and not under what condition each block
is reached. Infeasible paths still contain value information
regarding how binary code accesses data locations.

Using our insights, we design a function exploration al-
gorithm for TYGR that executes the blocks in a function
following a topological order starting from the entry point.
The sequence of nodes that TYGR visits induces a set of sim-
ple paths. TYGR collects how each data location is accessed
along each simple path.

int foo(int a) {
int b = 0x123;
int *p = 0;
if (a != 0) {

p = &a;
} else {

b = 0x234;
p = &b;

}
}

 int b = 0x123;
 int *p = 0;
 if (a != 0)

p = &a;
 b = 0x234;
 p = &b;

Path P2Path P1

BB1

BB2 BB3

Figure 4: An example illustrating the data-flow analysis in
TYGR. (Left) A simple function with two possible paths.
(Right) The control-flow graph of the function.

4.2.2 Data-Flow Graphs

We derive data-flow graphs from the information that TYGR
collects during function CFG exploration. By examining the
read-from or written-to locations along each simple path,
we obtain a set of symbolic expressions. Then TYGR uses
these expressions to derive the variable-level data-flow graphs
as shown in Figure 5 (left). The nodes in these data-flow
graphs are constant values (constant bitvector expressions).
They correspond to either immediate operands (e.g., constants
and register offsets) in VEX expressions (e.g., arguments
to some VEX operations) or computed values (e.g., to-be-
written values) that result from some VEX operation. VEX
operations include arithmetic operations (e.g., addition and
multiplication) and data-access operations (e.g., register-reads
and memory-writes). TYGR uses edge labels to mark how
each node is used: Addr means a node is used as the address
of a data-access operation; Value means a node is used as
the value of a data-access operation; Op1 and Op2 mean a
node is used as the first and second operand of an arithmetic
operation, respectively; and RegID means a node is used as
the “register offset” (which corresponds to a register name)
of a register-access operation.

Variable-level data-flow graphs describe how a particular
expression at a particular location along a particular path
is derived. They do not convey how the value of a variable
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rax p = &a

p = &b

b = 0x123 b = 0x234
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-0x10

Immediate
Operand

Computed
Value

Corresponding
Source Line

Constant Value Operation

Figure 5: Data-flow graphs for the function foo in Figure 4. (Left-Top) variable-level data-flow graphs for b and p along P1.
(Left-Bottom) variable-level data-flow graphs for b and p along P2. Note that because b was over-written, it has the value 0x234
rather than 0x123. (Right) aggregation of all data-flow graphs. Above is a simplified view; data-flow graphs track the operands,
operators, bitsizes, and locations of data derivation and usage.

is used by other variables throughout the function. Indeed,
different variable-level data-flow graphs may share identical
sub-graphs, and inter-variable data-flows give additional in-
formation about the type of an expression. Therefore, TYGR
aggregates all variable-level data-flow graphs into a single
function-level data-flow graph using a graph-union operator,
as shown in Figure 5 (right).

4.3 Type Inference with GNNs
We deliberately chose to use a GNN to infer variable types
because a GNN explicitly captures the access patterns of
variables through edges representing operations and nodes
representing variable locations. Such access patterns are only
implicitly captured in textual NN structures that other ML-
based solutions employ.

Given a graph G = (V,E) that contains a set of nodes V and
edges E, a GNN f would embed the graph into a set of vectors
(or embeddings), i.e., f (G) : G 7→ R|V |×d . Here G represents
the space of the graphs, while d specifies the dimensionality
of the embedding per each node. As shown in Figure 6, the
GNN encodes the graph in an iterative fashion, where each
iteration or layer of GNN propagates the information from
nodes to their direct neighbors. We next elaborate the specific
design choices of f .

Node embedding initialization. The first layer of the GNN

starts with the initial embedding representation of each node
h(0)v ,∀v ∈ V . In our setting, we represent the node with the
following simple features (Figure 6):

• Bitvector expression sizes: one-hot encoding of the
size of the node value, from the set of possible sizes
{1,8,16,32,64,128,others}.

• Five register related features, including is_register,
is_arg_register, and is_ret_register.

• 11 value features related to the concrete node value,
e.g., is_bool, is_float, close_to_stack_pointer, is_zero,
is_negative, and is_one.

We denote the above features as xv ∈ RD where D is the
dimension of the features. Then, the initial embedding is
h(0)v =W0xv+b0 where W0 ∈Rd×D and b0 ∈Rd are learnable
parameters.

Edge type. In our setting, each edge e ∈ E is a triplet
e = (u,r,v) that represents a directional edge of type r from
node u to v. An edge type represents the data-flow, control-
flow, and other operational meanings in pre-defined types R .
For a GNN to function properly, one would need to create a
backward edge for any forward edge in the original data-flow
graph. The backward edge type must be different from the
forward edge type. Therefore for any edge type r, we have an
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0x30 0x7fff0000

RegWrite

RegRead 0xffffffe0

0x7ffeffe0

MemWrite

0x123
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Data
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RegID
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Message
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(GNN)

Type
Prediction

Data-Flow Graph
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i16
i32
i64
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u16
u32
u64

f64*
struct*
enum*
union*
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void*

Initial Node
Embedding

Predicted
Type

Figure 6: The architecture of the graph neural network in TYGR. The data-flow graph (left) is converted into the vector represen-
tation (middle). The nodes in the data-flow graph is transformed into node embedding using Node Embedding Initialization. The
directed edges are augmented to allow message passing on both forward and backward directions. After message passing, the
node embedding is passed to the type prediction layer to produce the type vector (right).

edge type rev(r)∈ R representing its backward edge type. As
the total number of possible types |R | is known beforehand,
we can design the message passing operator based on the edge
types, as described next.
Message passing layer. Each layer of GNN f performs a
“message passing” operation that propagates the information
from the nodes to their direct neighbors. We denote the em-
bedding of node v at layer l as h(l)v , with the boundary case of
h(0)v defined above, and the update formula defined recursively
as follows:

h(l)v = σ

(
AGGREGATE({g(h(l−1)

u ,r,h(l−1)
v )}e=(u,r,v)∈Nv)

)
(1)

Here σ is an activation function such as ReLU or Sigmoid.
AGGREGATE is a pooling function that aggregates the set
of embeddings into a single vector. Nv denotes all incoming
edges to node v, while the function g(u,r,v) is the message
function that produces an embedding. We adopt the design
choice from RGCN [51], and realize Equation 1 as follows:

h(l)v = ReLU
(

∑
r∈R

MEAN({W (l)
r h(l−1)

u +W (l)
0 h(l−1)

v }e∈N r
v
)
)

(2)
where W (l)

r ∈ Rd×d are weights that depend on layer index
l and edge type r, and W (l)

0 ∈ Rd×d . N r
v ⊆ Nv denotes the

incoming edges to node v with edge type r.
After L layers, we use the output of the last layer as the

vector representation for each node, hv = hL
v , and this vector

is used for label prediction, as described next.
Type prediction. After obtaining the embedding hv for a
particular node v, we use a multi-layer perceptron (MLP) to
classify hv into the node label, which is the type corresponding

to the node. Given a set of types T , our type prediction layer
produces a vector tv ∈ R|T | for the node v, as shown as the
right most vector in Figure 6. During training, our predicted
type vector tv is then compared with the ground truth type
vector t̂v ∈R|T |, the one-hot encoding of the ground truth type
under the set of types T . In this work, we apply cross entropy
loss function

L(y, ŷ) =−∑
i

ŷi log(yi)+(1− ŷi) log(1− yi)

to compute the loss l = L(tv, t̂v). The loss l is then back-
propagated to update the learnable parameters. During testing
and prediction phases, we apply argmax on tv to obtain the
type that is predicted to have the highest probability. While we
predict types for all nodes in the graph, during both training
and testing, because we know the mapping from source-level
variables to graph nodes, we only compare to ground truth the
predicted types of the nodes that correspond to source-level
variables.

4.4 Type Inference for Structs

Inferring the shape and member types for structs is chal-
lenging. Existing approaches, such as OSPREY and DIRTY,
either fail to infer types for struct members or use a
common type (struct) for all struct members. Figure 7
shows a simple C function that involves several opera-
tions for one struct variable. OSPREY infers the type of
quoting_options as struct<4, 1, 8> but does not pre-
dict struct member types (inferring member sizes only).
DIRTY cannot predict types that are not part of the train-
ing set. For this function, DIRTY predicts the same incor-
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struct options{
int flag;
char buffer_type;
char* name;

};

int set_buffer(struct options default_options , int
s_flag , char s_type)

{
struct options quoting_options;
quoting_options = default_option;
quoting_options.flag = s_flag;
quoting_options.buffer_type = s_type;

int qsize = buffer_restyled(quoting_options);
return qsize;

}

Figure 7: A simple C function that sets a buffer.

rect type struct{int, char, char*} for all members of
quoting_options.

The unique GNN design allows TYGR to tackle the afore-
mentioned limitations. We divide the approach of inferring
struct types into two steps. First, we infer struct shapes: For
each location, TYGR predicts whether it stores a struct. Sec-
ond, we infer types for members inside each struct: After
knowing a location belongs to a struct type in the first step,
TYGR further predicts its type.

During training, suppose TYGR takes the func-
tion in Figure 7 as input, every location related to
quoting_options (e.g., quoting_options.flag and
quoting_options.buffer_type) are first marked as
struct along with all other basic types for training to
obtain MODELBase. Then for the second step, we train
a new model MODELStruct for predicting struct member
types, where we mask all variables of primitive types (base
types and pointer types in Figure 9) and only keep struct
members in training data. Ideally, this new model will predict
quoting_options.flag as int.

During type inference, for each location MODELBase in-
ferred as struct, we further use MODELStruct to infer their
struct-member-specific types. If correctly inferred, the model
output for quoting_options.flag will be int_S suggest-
ing it is an int type and also a struct member. We derive
the final struct accuracy by multiplying the struct accuracy of
MODELBase with the overall accuracy of MODELStruct.

5 Building the Data Set

When training TYGR on existing data sets that the state-of-
the-art solution uses, we found issues that would impact the
reliability of type inference. In this section, we first briefly
discuss these issues, and then detail how we build our data
set, TYDA, for training and evaluating TYGR.

5.1 Shortcomings with Prior Data Sets

An essential component for training and evaluating any ma-
chine learning model is a high-quality data set that is both
diverse and accurately reflects the task at hand. Unfortunately,
the binary data sets from previous studies are plagued by
various significant limitations. They are either inaccessible
to the public or contain excessive duplicates. The sole pub-
licly available data set, provided by STATEFORMER, unfortu-
nately contains a substantial amount of duplicated functions
and only 1% of the total number of functions in TYDA. Ta-
ble 2 shows detailed statistics of duplicates on the STATE-
FORMER x64 data set. Figure 8 shows the number of occur-
rences for each unique functions on a logarithmic scale. On
taking a closer look at STATEFORMER binaries, we found
that many are built from different versions of the same source
package, e.g., coreutils1.0 and coreutils2.0. Further-
more, several source packages produce multiple binaries with
only a minor difference. For instance, binutils produces
25 addr2line binaries. Each of these binaries is slightly
customized to handle ELF files from different architectures.
These contribute to a high duplication rate in the training
set, which may skew the model’s learning and bias the out-
come [2]. Additionally, significant duplicates may result in
substantial overlap in the training and testing sets; while it
may appear that the model is generalizing, it might actually
be memorizing [36].

To determine the function duplication rate, we hashed the
disassembly of every function in the data set after unifying
instruction pointer-relative offsets and immediates that fell
within the boundary of each binary’s addres space. This is an
over-approximation as some non-address referencing imme-
diates will be sanitized as well as instruction pointer relative
offsets that point to differing locations. On average 89.9% of
functions consist of duplicates, potentially biasing a model’s
training by overemphasizing these repeated functions. Even
after deduplicating these functions, the remaining unique func-
tions may be insufficient to adequately represent real-world
binaries. Recent work [44] also shows that the data set used
by DIRTY (another state-of-the-art) inference work has 56.9%
duplicate functions and 65.5% overlap in their training and
test sets. Such high rates of duplicate functions will lead to
inflated prediction accuracy. We argue that there is an im-
perative necessity for the construction of a more extensive,
thorough data set to facilitate a faithful evaluation of type
inference techniques.

5.2 Building The Data Set

We collected C packages from Gentoo and Debian reposito-
ries. For compiling Gentoo packages, we utilized the tool used
in VarBERT [44] and extended the tool for multi-arch support.
We compiled packages from Gentoo for x86 and x64 for four
compiler optimization levels, i.e., O0 (no optimization), O1,
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Figure 8: A logarithmic graph of the number of occurrences
for each unique function in the STATEFORMER x64 O0
dataset.

Arch. Opt. Level # Unique Functions # Functions #Dup Rate(%)

x64

O0 43,116 337,608 88.7
O1 37,507 330,926 89.8
O2 35,987 335,056 90.3
O3 34,009 333,076 90.7

Table 2: Statistics of unique functions in the STATEFORMER
data set.

O2, and O3, with debug symbols (-g) preserved. Similarly, we
compiled C Debian packages for AArch64, Arm32, Mips for
four optimizations using QEMU. In total, we built 163,643 bi-
naries, with 83,020 x86, 47,106 x64, 14,885 AArch64, 14,524
Arm32, and 4,107 Mips binaries. We randomly selected ap-
proximately 8% binaries from the TYDA data set to train,
develop, and evaluate TYGR due to constraints in the avail-
able computing resources that we use for this research project.
For ease of reference, we refer to this subset of TYDA as
TYDAMIN. Due to the smaller size of the Mips data set, we
use all Mips binaries. Note that TYDAMIN still contains sig-
nificantly more binaries and unique functions than the data
set that STATEFORMER uses. Table 3 shows the statistics of
TYDAMIN and TYDA. We provide function sizes, in terms of
instruction counts, in Appendix A.1.

We deduplicated all the functions in TYDAMIN before cre-
ating train, test, and validation splits. We disassemble all func-
tion bodies, unify all instruction pointer-relevant offsets and
intermediates that fall within the address space of the corre-
sponding binary, and get sanitized function body disassembly.
We then hashed the disassembly using SHA256 and removed
functions with duplicate hashes. Lastly, we introduce these
deduplicated functions in TYDAMIN binaries into the TYGR
pipeline.

Arch. Opt. Level # Functions Dup. RateTYDAMIN TYDA

x64

O0 543,101 12,639,052 53.6%
O1 534,181 14,876,300 54.9%
O2 540,132 13,865,615 54.3%
O3 524,611 19,601,677 52.0%

x86

O0 332,644 11,079,340 13.8%
O1 379,106 9,834,631 22.4%
O2 392,195 11,291,892 22.9%
O3 371,174 11,627,507 25.0%

AArch64

O0 131,984 958,931 23.6%
O1 133,100 1,936,300 22.1%
O2 140,214 2,041,829 24.3%
O3 127,610 526,949 22.6%

Arm32

O0 112,714 711,992 42.6%
O1 116,506 9,008,051 43.9%
O2 103,791 3,534,106 45.3%
O3 106,085 5,594,100 41.8%

Mips

O0 - 158,897 28.3%
O1 - 178,279 32.0%
O2 - 184,929 30.7%
O3 - 164,777 32.2%

Table 3: Numbers of functions for both TYDAMIN and TYDA.

base type ::= i8 | i16 | i32 | i64 | i128 |
u8 | u16 | u32 | u64 | u128 |
bool | char | union | enum | array

pointer type ::= base type* | void*
struct member type ::= base type_S | pointer type_S

Figure 9: All types that TYGR can predict.

6 Implementation

TYGR comprises 7k lines of Python code. The data-flow
analysis module is based on the ANGR framework [55]. The
learning module is written using PyTorch Geometric library
of PyTorch 1.8.1. Figure 9 shows all output types that TYGR
supports, which covers 97.1% of all observed types in the
data set. We convert types that TYGR does not support to the
closest type. For example, struct*** is cast to void*.

7 Evaluation

Our evaluation aims to answer the following questions:

RQ1 (Effectiveness) How accurate is TYGR’s type inference
on real-world binaries?

RQ2 (Comparative Evaluation) How does TYGR compare
to existing binary type inference techniques?

RQ3 (Efficiency) How efficient is TYGR’s type inference
engine?
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Arch Opt. Level Overall Acc. Struct Acc.

x64

O0 81.8 46.7
O1 76.0 42.9
O2 75.7 50.4
O3 72.8 41.0

Table 4: Overall accuracy and struct accuracy of TYGR on
the x64 TYDAMIN dataset.

Arch Opt. Level Precision % Recall % F1

x64

O0 82.8 82.2 82.5
O1 79.2 77.3 78.2
O2 78.4 76.9 77.7
O3 76.0 73.7 74.8

x86

O0 76.9 75.5 76.2
O1 61.6 60.4 61.0
O2 58.8 57.5 58.1
O3 61.4 60.1 60.8

AArch64

O0 82.0 81.3 81.7
O1 77.7 77.0 77.3
O2 66.3 65.1 65.7
O3 74.2 73.1 73.7

Arm32

O0 76.7 76.0 76.3
O1 60.6 58.9 59.7
O2 57.1 56.5 56.8
O3 59.3 58.0 58.6

Mips

O0 57.1 56.5 56.8
O1 47.1 46.0 46.5
O2 43.7 43.4 43.6
O3 45.0 44.2 44.6

Table 5: The precision, recall and F1 scores of TYGR on
different architectures and optimization levels.

Training Setup. We use the Adam optimizer with an initial
learning rate of 10−3 and a batch size of 32. We train our
model end-to-end using 35 epochs and pick the model with
the lowest validation loss. The expected training time is about
50 hours on average for each architecture. We use ReLU
as the activation function during message passing and the
type prediction. Finally, our GNN is configured to have eight
(L = 8) message passing layers, with latent dimension d = 64.
For every architecture-optimization combination, we adhere
to common practices by employing an 8:1:1 split ratio for
training, validation, and testing.
Machine Setup. All the experiments are run on a Linux server
with Ubuntu 20.04, Intel Xeon Gold 5218 at 2.30GHz with
64 cores, 251GB of RAM, and two NVIDIA GeForce RTX
3090-Ti GPUs.

7.1 RQ1: Type Inference Performance
We first evaluate the performance of TYGR on TYDAMIN. We
train and test TYGR for each combination of architecture and
optimization level (e.g. x64-O0).

Overall performance. Existing work uses different perfor-
mance metrics. For example, DIRTY and OSPREY use ac-
curacy while STATEFORMER uses precision, recall, and F1
scores. Therefore, we show the performance of TYGR using
both metrics.

Table 4 shows the accuracy of TYGR on x64. TYGR
achieves an average overall accuracy of 76.6% and an av-
erage overall struct accuracy of 45.2%. Table 5 shows the
precision, recall, and F1 scores. TYGR achieves an average
F1 score of 65.5%. Compared to other optimization levels,
TYGR performs best on O0. We believe that as optimization
levels increase, more variables are eliminated during compila-
tion, leading to reduced information that can be encoded into
data flow graphs. For example, in the O0 dataset, the average
number of edges and nodes per graph nearly triples that of the
O2 dataset, resulting in comparatively inferior type inference
performance.

However, it seems that increasing optimization levels does
not always led to less performance. Upon closer examination
of the O2 and O3 datasets, we discovered that the average
number of edges and nodes generated per graph for O3 in-
creased compared to O2. We believe that this is because func-
tions are inlined (and thus optimized away) when compiling
in O3, and this is what improves performance (for O3 com-
pared to O2). We observed the same trend for STATEFORMER
on TYDAMIN (and their datasets). To contextualize this, we
provide the average number of edges and nodes generated per
graph in Appendix A.3.

Inference accuracy per type. Table 6 illustrates how infer-
ence accuracy varies across different types. In general, the
inference accuracy of each type is relatively high (between
74.7% to 91.1%) until the very bottom of the table, where
the inference accuracy for i16 is only 55.0%. This shows (a)
with a sufficient number of samples of a specific type, TYGR
can easily achieve a high accuracy in inferring that type, and
(b) TYGR needs more samples to make precise inference for
types that do not appear frequently enough in the dataset.

Types of return variables. Although TYGR does not infer
function prototypes, knowing the types of variables that a
function returns can act as a secondary source of informa-
tion when recovering function prototypes. We take a deeper
look into the prediction performance of TYGR on return vari-
ables of all functions in the x64-O0 split of TYDAMIN. TYGR
achieves a prediction accuracy of 81.3%, which conforms
with the overall accuracy of x64-O0 in Table 4.

Generalizability. To evaluate the generalizability of TYGR,
we test TYGR on randomly selected functions that are in
TYDA but not in TYDAMIN. For each optimization level, we
randomly select 40k functions for x64 and x86 and 13k func-
tions for AArch64 and Arm32 to test. There is no test on Mips
as we are using all binaries from TYDA Mips. Table 7 shows
the results. TYGR demonstrates consistent performance for
unseen data.
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Type Percentage (%) Accuracy (%)
Pointer Types 52.8 80.0

struct* 25.6 91.1
i32 23.1 90.9

char* 16.3 74.7
u64 7.0 84.7
u32 5.9 80.0
bool 1.7 83.9
char 1.4 92.0

Omitted ... ...
f64* 0.3 48.5
i16 0.1 55.0

Table 6: Distribution and inference precision for variables
whose types present more than 0.1% of the x64-O0 TYDAMIN

dataset. “Pointer Types” refers to the collection of all pointer
types.

Arch Opt. Level Precision Recall F1

x64

O0 81.1 80.2 80.6
O1 77.6 76.0 76.8
O2 77.4 76.0 76.7
O3 74.7 73.1 73.9

x86

O0 77.4 75.7 76.5
O1 59.1 60.4 61.0
O2 58.3 57.1 57.7
O3 61.0 60.0 60.5

AArch64

O0 81.2 80.6 80.9
O1 74.2 73.6 73.9
O2 63.5 62.8 63.1
O3 73.7 72.6 73.1

Arm32

O0 75.4 74.7 75.1
O1 59.2 57.9 58.5
O2 58.1 57.6 57.9
O3 58.5 57.9 58.2

Table 7: Test of TYGR on the functions that are not from
TYDAMIN.

7.2 RQ2: Comparison Against Baselines
We compare TYGR against state-of-the-art binary type in-
ference techniques that are publicly available: DIRTY [10],
OSPREY [70], and STATEFORMER [45]. We omit compar-
isons against commercial tools (Ghidra and IDA Pro) because
OSPREY outperforms both.

7.2.1 Comparison against DIRTY and OSPREY

To ensure a fair evaluation, we only compare against the con-
figurations for which each tool was originally designed and
evaluated (e.g., DIRTY and OSPREY only support x64 bina-
ries).

While OSPREY is not publicly available, its authors pro-
vide results of OSPREY on x64-O0 binaries of GNU Coreutils.
For a fair comparison, we remove the Coreutils functions that
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Figure 10: Accuracy results on GNU coreutils O0 executables.
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Figure 11: Overall accuracy of TYGR and DIRTY on the
TYDAMIN x64 dataset.

are within TYGR’s training set. Because the authors com-
pared OSPREY against DIRTY in their paper, we also evaluate
DIRTY on the same set of binaries. OSPREY predicts only a
few primitive and complex types (e.g., Primitive_1, which
represents a primitive type that takes one byte in memory), so
we post-process the prediction results of DIRTY and TYGR
into the types that OSPREY supports. For example, we convert
both bool and char to Primitive_1, and const char *
and char * to Pointer.

Figure 10 shows the prediction accuracy of both overall
types and only struct types for DIRTY, OSPREY, and TYGR.
TYGR outperforms the other tools. Specifically, TYGR is
2.7% more accurate than OSPREY in terms of overall type
prediction, and more than 11.1% more accurate when predict-
ing struct types.

DIRTY was trained and evaluated only on x64 O0, but
should support predicting types on x64 O1-O3 binaries (as
stated in their paper). Therefore, we also train and test DIRTY
on x64 O1-O3 binaries. Because the authors of DIRTY only re-
port prediction accuracy, we compare the accuracy of DIRTY
against the accuracy of TYGR.

Figure 11 shows the overall type prediction accuracy of
DIRTY and TYGR, where TYGR outperforms DIRTY by at
least 26.1%. Figure 12 shows prediction accuracy for struct
types. TYGR outperforms DIRTY by at least 10%. Both struct
accuracy and overall accuracy for DIRTY on O1 are low due
to the aforementioned shortcoming that is related to unseen
variables. A further analysis was performed for the O1 dataset
and we found 20.8% of variable types do not existing in the
ground truth of DIRTY. DIRTY is unable to infer the types for
them, causing the low accuracy.
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Figure 12: Accuracy of predicting struct types for TYGR
and DIRTY on TYDAMIN x64 dataset.

7.2.2 Comparison against STATEFORMER

STATEFORMER does not support AArch64, so we only train
and test it on x64, x86, Arm32, and Mips. STATEFORMER
does not support struct member prediction; It only predicts
every struct member variable as struct. Therefore, we post-
process the prediction results of TYGR and unify struct mem-
ber types that TYGR predicts into struct for a fair compari-
son.

As Table 8 shows, STATEFORMER achieves an average
F1 score of 22.5% on x64, x86, Arm32, and Mips datasets.
Whereas TYGR achieves an average F1 score of 63.3%
and outperforms STATEFORMER by 40.8%. We believe that
this difference is because STATEFORMER is evaluated on
TYDAMIN (Table 3) which contains significantly more unique
functions compared to their dataset (Table 2). In addition to
a lower F1 score, STATEFORMER’s method of identifying
variables (i.e., type inference candidates) results in significant
redundancy [45, Table 1], further raising concerns about its
effectiveness. Specifically, STATEFORMER considers every
token in a stream of assembly as a candidate for type infer-
ence. This results in a lot of entities, such as nop, having the
sentinel type of no-access. This inflates the successful predic-
tions count, where most predictions are made on entities that
are not directly usable by the end-user or any downstream
analysis task, e.g., decompiler.

We have also evaluated on the obfuscation binaries pro-
vided by STATEFORMER. Shown in Table 9, STATEFORMER
achieves an average F1 score of 72.1% while TYGR achieves
an average F1 of 79.9% and outperforms STATEFORMER by
7.8%.

Our results show that TYGR outperforms the state-of-the-
art machine learning-based type inference techniques by a
considerable margin.

7.3 RQ3: Efficiency of TYGR

In this section, we measure the inference performance
of TYGR. Specifically, we measure each function’s inference
time and memory consumption, and the average numbers for
each architecture.

Arch. Opt. TYGR STATEFORMER

x64

O0 82.5 52.6
O1 78.2 38.7
O2 77.7 40.8
O3 74.8 22.8

x86

O0 76.2 38.9
O1 61.0 39.7
O2 58.1 20.7
O3 60.8 25.4

Arm32

O0 76.3 12.8
O1 59.7 11.6
O2 56.8 4.1
O3 58.6 7.7

Mips

O0 56.8 12.1
O1 46.5 5.7
O2 43.6 15.5
O3 44.6 10.3

Table 8: Comparison on F1 scores between STATEFORMER
and TYGR.

Arch. Opt. TYGR STATEFORMER

x64

bcf 80.2 72.0
cff 81.0 72.1
sub 78.5 72.2

Table 9: Comparison on F1 scores between STATEFORMER
and TYGR for obfuscation binaries.

7.3.1 Inference Time

The per function inference time for TYGR ranges from 1.5
to 4.5 seconds, which is reasonable. The inference time per
function for TYGR is slightly higher for O0 binaries across all
architectures, ranging from 1.8 to 4.5 seconds. The inference
time per function for other optimization levels range from 1.7
to 3.1 seconds This is because O0 binaries (without compiler
optimizations) have more variables and more instructions
(thus more VEX expressions and statements) than binaries
that are compiled under higher compiler optimization levels.

7.3.2 Memory Consumption during Type Inference

The average memory consumption of TYGR ranges from
0.7 to 2.3 MB per function. As expected, TYGR uses more
RAM during type inference for functions in O0 binaries. In-
terestingly, the memory consumption is higher for RISC ar-
chitectures. On average, TYGR uses 2.1 MB for AArch64. In
comparison, TYGR uses an average of 0.8 MB of RAM for
x86 and 0.9 MB of RAM for x64. This is because RISC archi-
tectures have higher numbers of load and store instructions
than on x86 and x64, leading to more nodes in the data-flow
graph and, consequently, higher memory consumption.

We present the inference time in the same environ-
ment for four software projects in comparison with STATE-
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Project # Variables Runtime (CPU)
TYGR Stateformer Debin Ghidra

ImageMagic 23,727 208 148 N/A* 597
PuTTY 22,429 143 124 3,042 359

Findutils 6,534 43 18 675 80
zlib 730 6 3 41 9

*Debin terminated abruptly after running on one of the binaries for 138
minutes.

Table 10: Prediction time on CPU (in seconds) of TYGR,
STATEFORMER, DEBIN, and GHIDRA on four software
projects with varying number of variables.

FORMER, DEBIN and GHIDRA in Table 10. We chose these
projects as they were used to measure the inference time
in STATEFORMER. TYGR performs on par with STATE-
FORMER with slight difference. This shows that TYGR
achieves higher precision with the same inference time.

7.3.3 Graph Building (or Training) Performance

We also measure the time it takes to build data flow graphs
necessary for training on x64 Coreutils O0 binaries. It takes
less than ten seconds for 80.42% of functions and 93.37% of
functions complete within 30 seconds, and 97.35% of func-
tions complete the process within 60 seconds.

For most cases, as expected, the graph build time is propor-
tional to the number of variables. However, there are some
cases where this is not the case. For instance, it took 400
seconds to build the data flow graph for a complex function
with few variables. This is because the graph-building time
also depends on the complexity of the data flows (e.g., nested
loops and conditionals).

7.4 Feature Analysis

Table 6 provides inference results for certain types. An in-
triguing observation is that although bool type occupies a
very small portion of the dataset, 1.7% in this case, it achieves
comparative high accuracy. To understand what features con-
tribute to this unique high precision, we conducted a case
study on bool type. Bool type is typically used as a flag for
branches and determines the following program path, and
thereby the same bool variable may occur multiple times for
different program paths when performing dynamic analysis.
While other variables like i32 can also be utilized for branch-
ing purposes, bool variables are predominantly used for this
task. This feature for bool variables exhibit a distinct charac-
teristic. Specifically, bool nodes display a structure pattern
that involves more than twice the number of location nodes
and edges, such as RegRead node and Value edge in Figure
5, with respect to other variable nodes. Furthermore, these
bool nodes are found to be connected to a greater number of
edges with labels related to comparison operations such as
__eq__.

8 Discussion

Our experiments demonstrate that using graph neural net-
works to learn and apply data-flow patterns for type inference
is competitive with other machine learning approaches as well
as industry-standard tools such as IDA. We now discuss the
main limitations of TYGR and how to overcome or mitigate
them.

Choice of program variables. The memory space is parti-
tioned to three distinct regions: global, stack, and heap. TYGR
focuses on predicting the types of stack and heap variables .
It is possible to extend our implementation to handle global
variables in a similar manner. In particular, it necessitates
combining data-flow graphs from different functions that use
the global variable.

Training set sizes and model performance. We varied the
size of training set and retrained our models, and we observed
that the prediction accuracy peaks at around 80%. We be-
lieve that the main reasons are (a) Certain variable types (e.g.,
enum* and union*) are too rare in the training set for training,
and (b) Some variable types cannot be effectively differenti-
ated by only observing how the variables are used. Interested
readers can refer to Appendix A.2 for an in-depth analysis
of these reasons. A critical improvement for TYGR will be
incorporating callee- and caller-access patterns when building
the data-flow graphs, which we leave as future work.

Predicting boundaries between two adjacent struct. For
all struct variables, TYGR infer their types as struct before
further inferring types for their members. However, if there
are two adjacent struct variables on the stack, TYGR will
predict them as a large consecutive struct variable and cannot
infer the boundaries between them. Luckily, this scenario is
rare in TYDA: Out of all functions with struct variables on
their stack frames, only 0.1% of these functions have two or
more struct variables, and even fewer of these struct variables
are adjacent on the stack. We leave it as future work.

Scope of data-Flow analysis. Our data-flow analysis only
examines intra-procedural data-flow. We expect that an inter-
procedural analysis will yield richer input data for the learn-
ing model, and thus better performance. However, inter-
procedural analysis is potentially expensive, and excessive
analysis might offset the scalability benefit of using a ma-
chine learning approach. Nevertheless, we believe this to be a
fruitful direction of investigation.

Indirect jump target resolution. Our analysis relies on
ANGR to construct control-flow graphs. While ANGR can
accurately compute the targets of direct jumps, estimating the
targets of jumps that involve dynamic computation is much
harder. As a result, we may end up never exploring certain

Because heap variables must be indirectly accessed by dereferencing
pointers, TYGR predicts the type of a heap variable by predicting the shape
of pointers that point to the variable.

13



parts of a function. Fortunately, the learning model can cope
with such missing information.

9 Related Work

This work primarily focuses on type inference applied to
binaries. Specifically, we focus on data type inference, i.e.,
recovering simple types for the identified variables.

Static analysis, specifically constraint solving, is one of
the commonly used approaches. These techniques work
by first introducing types based on specific rules and then
propagate this seed information to different entities (vari-
ables/registers or memory objects) based on the program’s
data-flow [40]. One one hand, some prior works focus on
inferring a limited set of types such as signed/unsigned inte-
gers [66], strings [12], struct types [58]. On the other hand,
works such as TIE [35] and Retypd [42] attempt to infer a
more comprehensive set of types specified using a type-lattice.
These techniques seed their algorithms by assigning types
based on certain base rules. For instance, an operand for load
or store instruction should be of pointer type. They then use
propagation techniques either based on Value Set Analysis [5]
or constraint solving to propagate these seed types to all other
entities.

Best-effort techniques [22, 29] that are based on heuris-
tics suffer from precision. Furthermore, most of these tech-
niques are specific to each architecture, such as x64, x86, etc.
Although TIE [35] and Retypd [42] try to be architecture-
agnostic by using an IR such as BIL [7], not all architectures
(e.g., MIPS) are supported by BIL. Finally, none of these
techniques are available as open-source [8], which makes it
hard to evaluate or extend them. There are other techniques
specific to C++ [26], where the main goal is to determine
the classes and layout of objects. These techniques are not
directly applicable as they mainly focus on recovering object-
oriented features [67] such as class hierarchy [27, 52] and
virtual table layout [17].

Some techniques use dynamic analysis [14, 30, 34, 69],
wherein type propagation is usually done by taint tracking,
and finally combine results from different executions to de-
termine the type of a variable. However, the effectiveness
of these techniques depends on the feasibility of executing
the program and the availability of high coverage test cases,
which is not easy, especially for libraries, embedded programs,
and network-based programs.

Machine learning (ML) techniques have been explored
in the context of binary analysis, popular applications being
vulnerability detection [24, 24, 43, 60], function identifica-
tion [6,49,54,59], and code clone detection [16,23,25,46,62–
64]. Most of these use traditional ML models such as SVMs.
However, recent work [54, 62] have started using Neural net-
works, especially Recurrent Neural Networks (RNNs). ML
techniques are also used for semantic problems such as type
inference. CATI [9] uses word2vec to predict types based

on usage contexts. Similarly, EKLAVYA [13] uses RNNs to
predict function signatures, including types of the arguments.
DEBIN [32] uses probabilistic models to predict debug infor-
mation (types and names of variables) in stripped binaries.
They use a dependency graph to encode uses of identified
variables and then convert them into feature vectors and then
train a model based on Extremely Randomized Trees [28].
STATEFORMER [45] sidesteps the problem of feature selec-
tion by using transformers on micro execution traces to learn
the instruction semantics as pre-trained models. These pre-
trained models are further used to perform type prediction.
Similarly, DIRTY [10] also uses a transformer model for type
prediction. The most recent technique, OSPREY [70] tries
to combine both constraints solving and machine learning.
Unfortunately, as shown in Table 1, none of these techniques
have multi-architecture support and require considerable ef-
fort to extend to a new architecture. Finally, our comparative
evaluation in Section 7.2 shows that TYGR outperforms all
these techniques.

In contrast, TYGR uses data-flow analysis to precisely cap-
ture intra-procedural data-flow graphs and encodes them using
graph neural networks, which in turn perform type inference
via classification.

10 Conclusion

We present TYGR, a new technique for binary type inference.
TYGR uses data-flow analysis to precisely track data flows
for variables in an architecture-agnostic manner. The data-
flow information is encoded using GNN, which then performs
type inference as a classification task. We evaluate TYGR on
TYDAMIN, and demonstrate that it predicts types for variables
with a high accuracy.
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A Appendix

A.1 Function Sizes
Detailed function size data, based on instruction counts, are
shown in Table 11. We only show x64 here because the other
architecture results are very similar.

A.2 Impact of Data on Prediction Accuracy
To analyze the effect of data volumes on the prediction per-
formance of TYGR, we varied the size of the training data
for x64 O0 and measured the change in the performance of
our models. Training data was subsampled from TYDAMIN

at rates of 30%, 40%, 60%, and increased by 20% for the
rest. We also oversampled from TYDA to show the effect on
training beyond TYDAMIN (this is represented as the size of
training data between 100% and 140%). Figure 13 shows the
results of our experiments, where the prediction performance
of TYGR remains stable at around 80% beyond using 100%
of TYDAMIN.

What may cause the plateau of TYGR’s prediction perfor-
mance? We believe there are two main reasons:

(1) Some variable types are too rare. Certain variable types
are too rare in the training set. For example, union* is only
0.14% of the data set while enum* is 0.08%. The prediction
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Figure 13: The accuracy of TYGR on x64-O0. 100% usage
represents TYDAMIN. The extra 20% and 40% are randomly
selected from TYDA.

accuracy of these two types are 65% and 31%, respectively.
We measured a total of 4.4% variables whose types occupy
less than 1% of the training set, and the prediction accuracy
for them are all around 50%, which are significantly lower
than the overall accuracy of 80%.

(2) Similar access patterns for different variable types.
We also noticed that some variable types cannot always be
effectively differentiated only by their access patterns, such as
char* versus struct* (consider a struct with only one-byte
member fields), and i32 versus u32.

We took a deeper look into i32 variables. Out of all mis-
prediction cases for i32, 36.35% are mis-predicted as u32,
which is the most mis-predicted type. We randomly selected
from our test set 40 C functions (15% out of 269) where i32
variables are mis-predicted as u32. Then we compiled two
versions of such functions: original (without change the type
of the mis-predicted variable) and type-updated (where we
update the type of the mis-predicted variable from i32 to
u32). Finally we compare the assembly after compiling both
versions of functions. Not surprisingly, the assembly of type-
updated function is the same as the assembly of the original
function in all 40 pairs, which means that their access patterns
will be the same, making it impossible for TYGR (or any
other type inference tools that only rely on variable access
patterns) to differentiate. We also manually inspected these 40
functions to understand how they use the mis-predicted i32
variables. In most cases, these variables are used as flags, file
descriptors, and other variables that only hold small integers;
Updating their types to u32 does not change their access
patterns.

We observed a similar situation for enum, which is the
second most mis-prediction cases (33.04% for i32 mis-
predictions). In most cases, enum variables are used like
i32 variables (e.g., both int SANE_STATUS_GOOD = 0; and
typedef enum{SANE_STATUS_GOOD = 0, ... } used in

Arch. Opt. Level Avg #Nodes Avg #Edges

x64

O0 181 288
O1 24 29
O2 27 33
O3 26 33

x86

O0 65 99
O1 27 37
O2 37 53
O3 39 56

AArch64

O0 196 309
O1 99 147
O2 95 138
O3 118 175

ARM

O0 180 295
O1 67 101
O2 81 122
O3 89 137

MIPS

O0 142 238
O1 55 83
O2 64 98
O3 67 102

Table 12: Average numbers of nodes and edges per graph
generated by TyGr

the same code: if (SANE_STATUS_GOOD) {...}), resulting
in the exact same assembly code after compiling.

A.3 Graph Statistics
Detailed statistics about the generated graphs (average num-
ber of nodes and edges) are shown in Table 12. O0 binaries
contain the most variables and contribute to the highest aver-
age number of nodes and edges. The increase for the average
numbers from O1 to O3 could be caused by the decrease of
functions that contain variables.
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