CIS 670: Program Analysis

Title: Abstract Interpretation.

Guest Lecturer: Sriram Sankaranarayanan.

NEC Labs America,

Princeton, NJ.

srirams@nec-labs.com

Date: Oct 3rd, 2007.

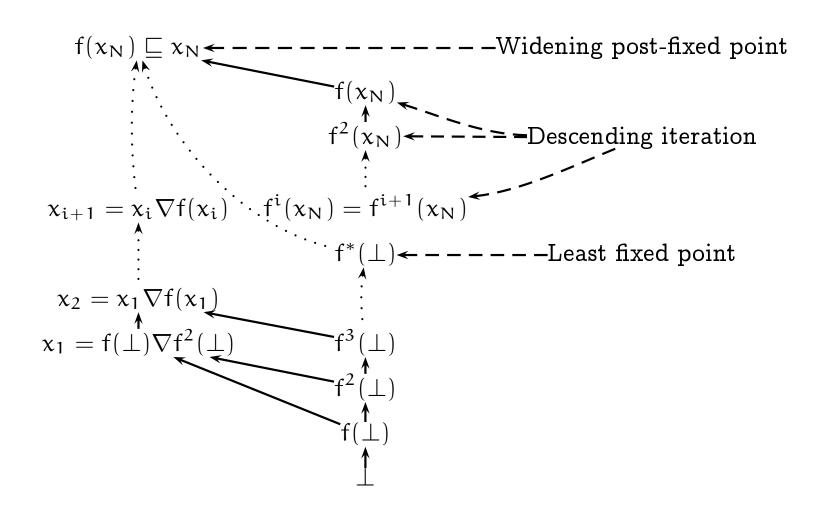
The story so far...

- Signs and Interval analyses: Lattice Inequalities.
- Iteration strategy for solving lattice inequalities.

$$x_0 = f(\bot), x_1 = f(x_0), \cdots$$

- The iteration converges if the lattice is finite.
- If the lattice is not finite, then iteration may diverge.
- We used widening to force convergence.
- Widening reaches a postfixed point

Ascending/Descending Iterations



Descending Iteration: Convergence

Descending Chain Condition: Dual to Ascending Chain condition.

Descending iteration need not necessarily converge in finitely many steps.

(1) Stop the iteration after some fixed number of steps. This is not a good idea (for large programs).

(2) Use a "narrowing" operator to force convergence.

Narrowing

Let $b \sqsubset a$, then $a \triangle b$ is intermediate to a, b.

$$b \sqsubseteq a \triangle b \sqsubseteq a$$
.

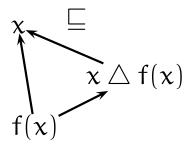
Let $a_1 \supset a_2 \supset a_3 \supset \dots$ be an infinite decreasing iteration.

Narrowed iteration: Define sequence b_1, b_2, \ldots ;

$$b_1 = a_1, b_{i+1} = b_i \triangle (a_{i+1}).$$

- $(1) \ b_1 \sqsupseteq b_2 \sqsupseteq \cdots \sqsupseteq b_N = b_{N+1} \ \text{for} \ N > 0.$
- (2) $\min_{\sqsubseteq} \{a_1, a_2, \ldots, \} \sqsubseteq b_N$.

Illustration:



Property:

If
$$f(x) \sqsubseteq x$$
 then $f(x \triangle f(x)) \sqsubseteq x \triangle f(x)$.

Therefore, result of narrowing is still part of the decreasing iteration.

Interval Narrowing

Let $[c, d] \sqsubseteq [a, b]$. Then $[a, b] \triangle [c, d] = [\ell, u]$.

$$\ell = \left\{ egin{array}{ll} c & a = -\infty \ a & ext{otherwise} \end{array}
ight.$$

$$\mathfrak{u} = \left\{ egin{array}{ll} \mathrm{d} & \mathrm{b} = \infty \\ \mathrm{b} & \mathrm{otherwise} \end{array}
ight.$$

Special case: $\chi \triangle \perp = \perp$.

Interval Narrowing: Examples

$$[1,1] \triangle \bot = \bot$$
 $[-1,\infty) \triangle [1,10] = [-1,10]$
 $[-1,\infty) \triangle [5,\infty) = [-1,\infty)$
 $[-\infty,\infty] \triangle [0,10] = [0,10]$

Updated picture with Widening/Narrowing sequence

Delayed Widening

In order to improve precision:

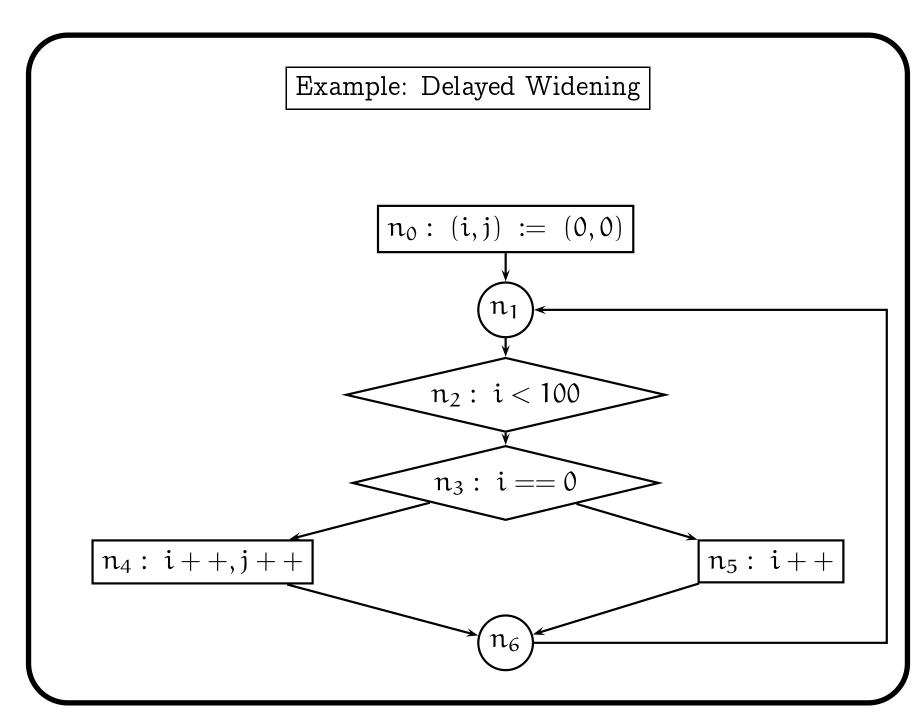
• First apply k > 0 regular iterations,

$$x^0 = \bot$$
, $x^{i+1} = f(x^i)$, if $i < k$.

• Then apply widening iteration until post fixed point.

$$x^{i+1} = x^i \nabla f(x^i)$$
.

• Similarly narrowing iteration can be delayed.



With no delay in widening, we compute the fixed point at n_1 :

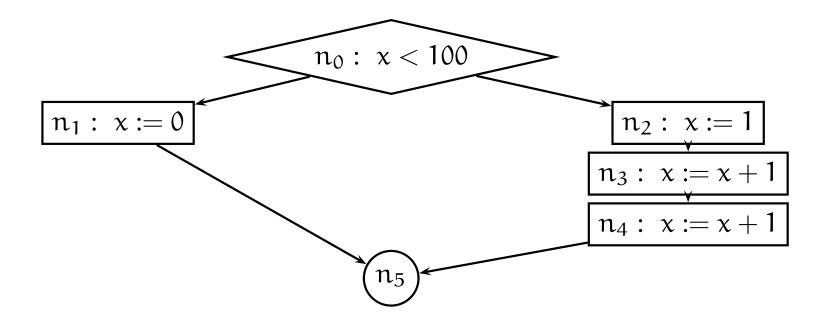
$$i \in [0, 100]$$
 and $j \in [0, \infty)$.

With delay in widening (~ 5) step delay, we can compute:

$$i \in [0, 100] \text{ and } j \in [0, 1]$$
.

Where to widen?

Our current approach says widen everywhere.



Question: With delayless widening, what is the solution computed at n_5 ?

Widening strategy

- Widening needs to be applied when there are loops in the code.
- Widening needs to be applied only at the loop heads:

$$x_j^{i+1} = \begin{cases} f(x_j^i) & \text{if } n_j \text{ not a loop head} \\ x_j^i \nabla f(x_j^i) & \text{if } n_j \text{ is the head of a loop} \end{cases}$$

• Similarly, we need to narrow only at the heads of loops.

Widening Upto Operator

• Current widening goes from finite to infinity in one step:

$$[0,0]\nabla[0,1] = [0,\infty), [0,1]\nabla[-1,1] = (-\infty,1].$$

- Upto set: A set of integer points. Eg., $U = \{-1, 0, 1, 100, 200, 1000\}.$
- Widening upto operator ∇_{U} : choose the smallest bound from the upto set to replace (if no bound exists, use $\pm \infty$).
- Eg., $[-1,5]\nabla_{\mathbf{U}}[-1,6] = [-1,100]$, $[1,10]\nabla_{\mathbf{U}}[0,10] = [-1,10]$,

The Big Picture

- Signs Analysis: Compute a sign for every variable.
- Interval Analysis: Compute an interval for every variable.
- Are these analyses sound? What does soundness mean?

Collecting Semantics

a.k.a "Concrete Interpretation".

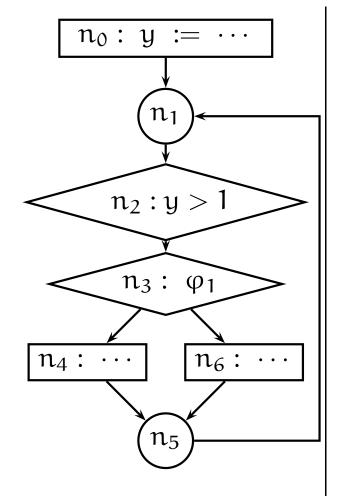
State: A program state is an assignment of integer values to variables.

$$s: \langle x_1:v_1, x_2:v_2, \ldots, x_n:v_n \rangle$$
.

Let $\Sigma: Z \times Z \times \cdots \times Z$ be the set of all program states.

Reachable states: Let Reach $(n) \subseteq \Sigma$ be the set of all states reaching a location n.

Concrete Interpretation



$$post(n_0, Reach(n_0)) \subseteq Reach(n_1)$$

$$Reach(n_5) \subseteq Reach(n_1)$$

$$Reach(n_1) \subseteq Reach(n_2)$$

$$\mathsf{Reach}(n_2) \cap \llbracket y > 1 \rrbracket \subseteq \mathsf{Reach}(n_3)$$

$$\mathsf{Reach}(n_3) \cap \llbracket \phi_1 \rrbracket \subseteq \mathsf{Reach}(n_4)$$

$$post(n_4, Reach(n_4)) \subseteq Reach(n_5)$$

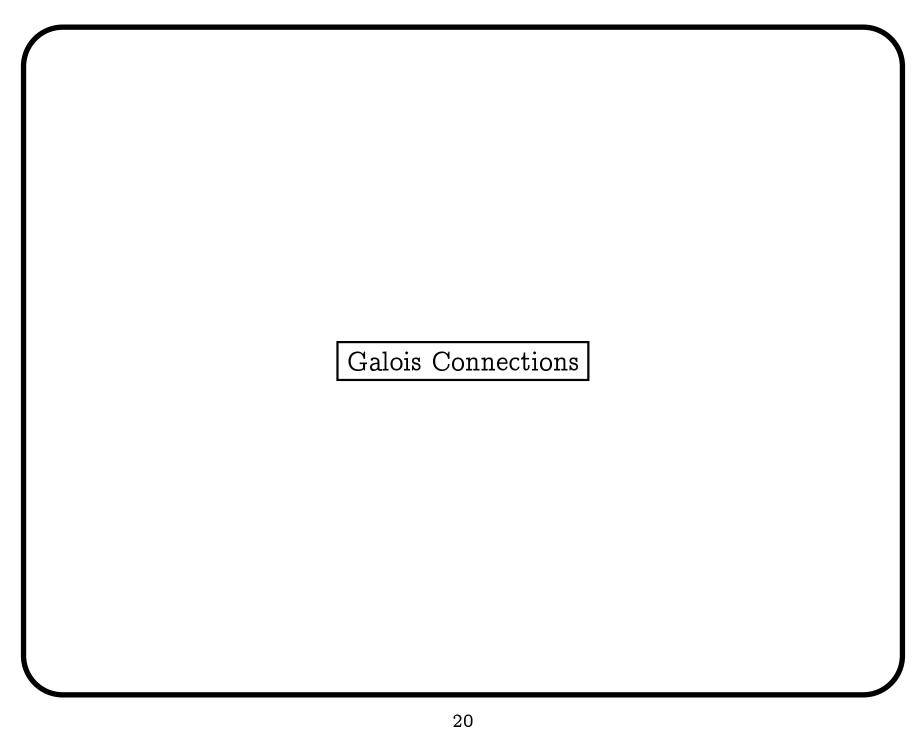
$$post(n_6, Reach(n_6)) \subseteq Reach(n_5)$$

Reachable States

- The concrete lattice is $C: 2^{\Sigma}$ ordered by \subseteq .
- Reachable states can be expressed as a <u>fix point</u> of a monotonic function over sets of states.

Reach(·):
$$\{F(\emptyset) \cup F^2(\emptyset) \cup \cdots \cup F^n(\emptyset)\}$$
.

- This is however, a purely theoretical exercise.
 - The lattice of state sets 2^{Σ} has infinite height.
 - Arbitrary infinite sets cannot be represented inside a computer.



Galois Connection

Consider two lattices $\langle C, \subseteq \rangle$ and $\langle A, \sqsubseteq \rangle$.

A Galois Connection between C and A is a pair of functions $\alpha: C \mapsto A$ and $\gamma: A \mapsto C$, such that

for all $S \in C$ and $\alpha \in A$, $\alpha(S) \sqsubseteq \alpha$ iff $S \subseteq \gamma(\alpha)$.

 α is called the "Abstraction Map" and γ is called the "Concretization Map".

Example #1: Signs Lattice

$$\alpha(I) = \begin{cases} \text{"\bot", if $I = \emptyset$} \\ \text{"$+$", if $I \subseteq Pos$} \\ \text{"$-$", if $I \subseteq Neg$} \\ \text{"0", if $I \equiv \{0\}$} \\ \text{"\top", o.w.} \end{cases}$$

$$\gamma(\mathbf{c}) = \llbracket \mathbf{c} \rrbracket$$
.

Example# 2: Interval Lattice

Let $C: 2^{\mathbb{Z}}$ and A: Intervals.

$$\alpha(X) = [\min(X), \max(X)]$$

$$\gamma([\ell, \mathbf{u}]) = [\![\ell, \mathbf{u}]\!] = \{z \mid \ell \le z \le \mathbf{u}\}.$$

Verify the Galois connection.

$$(\forall I\subseteq Z, [\ell, \mathfrak{u}]\in \mathsf{Intervals})\ \alpha(I)\sqsubseteq [\ell, \mathfrak{u}]\ \mathsf{iff}\ I\subseteq \gamma([\ell, \mathfrak{u}])\ .$$

Galois Connection: Intuition

 α : Sets of States \mapsto Abstraction (signs/intervals/...).

and

 γ : Abstraction \mapsto Sets of states it represents.

Question: What does a Galois connection mean?

If a abstracts a set S iff the concretization of a overapproximates S.

Galois Connection: "Best" abstraction & concretization

Property # 0: Derive α given γ (and vice versa).

Idea:

"Best" abstraction of S should be the smallest abstract element that contains S.

$$\alpha_b(S) = \min\{\alpha \mid S \subseteq \gamma(\alpha)\}.$$

Similarly, "best" concretization given α is

$$\gamma_b(\alpha) = \max\{S \mid \alpha(S) \sqsubseteq \alpha\}.$$

Let us try to apply this to the two domains we have seen.

Galois Connection: Closure

Property # 1: $(\forall S \in C) S \subseteq \gamma(\alpha(S))$

Proof:

$$\alpha(S) \sqsubseteq \alpha(S)$$
. Therefore, $S \subseteq \gamma(\alpha(S))$.

Property # 2: $(\forall \alpha \in A) \ \alpha(\gamma(\alpha)) \subseteq \alpha$

Proof:

$$\gamma(\alpha) \subseteq \gamma(\alpha)$$
. Therefore, $\alpha(\gamma(\alpha)) \sqsubseteq \alpha$.

Galois Connection: Monotonicity

Property # 3: α and γ are monotonic. I.e.,

If
$$S_1 \subseteq S_2$$
 then $\alpha(S_1) \sqsubseteq \alpha(S_2)$.

Similarly,

If
$$a_1 \sqsubseteq a_2$$
 then $\gamma(a_1) \subseteq \gamma(a_2)$.

Proof: Let $S_1 \subseteq S_2$. We know from Property #1 that $S_2 \subseteq \gamma(\alpha(S_2))$. Therefore, $S_1 \subseteq \gamma(\alpha(S_2))$. Applying Galois connection definition, $\alpha(S_1) \subseteq \alpha(S_2)$.

Similarly, we can prove the other part too.

Join Preservation

Property # 4: For all $S_1, S_2 \in C$,

$$\alpha(S_1 \cup S_2) = \alpha(S_1) \sqcup \alpha(S_2).$$

Proof: We rely on a sub-fact about lattices.

Fact: If for $a, b \in L$, for all $c \in L$, $a \sqsubseteq c \leftrightarrow b \sqsubseteq c$ then a = b.

$$\begin{split} \alpha(S_1 \cup S_2) \sqsubseteq c & \text{ iff } \quad S_1 \cup S_2 \subseteq \gamma(c) \\ & \text{ iff } \quad S_1 \subseteq \gamma(c), \ S_2 \subseteq \gamma(c) \\ & \text{ iff } \quad \alpha(S_1) \sqsubseteq c, \ \alpha(S_2) \sqsubseteq c \\ & \text{ iff } \quad \alpha(S_1) \sqcup \alpha(S_2) \sqsubseteq c \end{split}$$

Now applying fact, we get

$$\alpha(S_1 \cup S_2) = \alpha(S_1) \sqcup \alpha(S_2).$$

Meet Preservation

For all $S_1, S_2 \in C$,

$$\alpha(S_1 \cap S_2) = \alpha(S_1) \cap \alpha(S_2).$$

Proof: Use dual fact.

Monotone Function Theorem

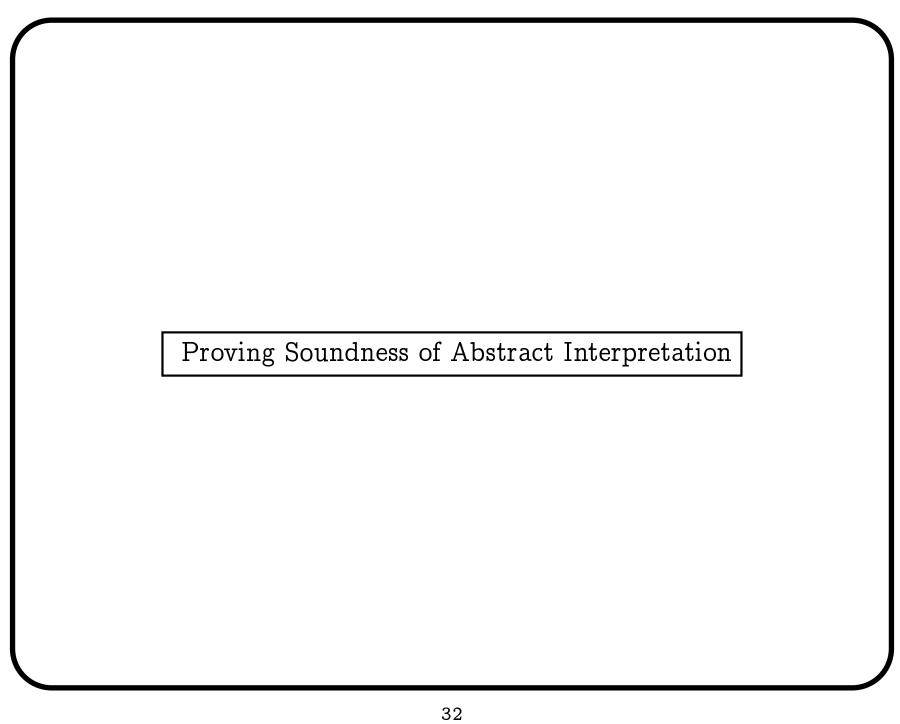
Let $f: C \mapsto C$ and $g: A \mapsto A$ be monotone functions on C, A respectively.

g is a sound abstraction of f iff

$$\forall S \in C, \ \alpha(f(S)) \sqsubseteq g(\alpha(S)).$$

Claim: $\alpha(\mathsf{LFP}_{\mathsf{C}}(\mathsf{f})) \sqsubseteq \mathsf{LFP}_{\mathsf{A}}(\mathsf{g})$.

- 1. $\alpha(\emptyset) = \bot$
- 2. $\forall n \geq 0, \forall S \in C, \alpha(f^n(S)) \sqsubseteq g^n(\alpha(S))$
- 3. $\alpha(LFP(f)) \sqsubseteq LFP(g)$.



Background

- We have a "concrete domain" $C: 2^{\Sigma}$ and abstract domain $\langle L, \sqsubseteq \rangle$.
- Fixed point inside lattice C: Reach(n).
- Dataflow analysis inside lattice L: fp(n) (eg., sign(n,x), Rng(n,y)).
- Goal: Relate concrete fixed point Reach(n) with abstract fixed point fp_L(n).
- Let $\langle \alpha, \gamma \rangle$ be a galois connection between \mathcal{C} and \mathcal{L} .

Soundness: Basic Operations

We will establish $\alpha \circ f \sqsubseteq g \circ \alpha$.

• For any sets S_1, S_2 ,

$$\alpha(S_1 \cup S_2) \sqsubseteq \alpha(S_1) \sqcup \alpha(S_2)$$
.

This is the join preservation result.

• For sets S_1, S_2 ,

$$\alpha(S_1 \cap S_2) \sqsubseteq \alpha(S_1) \sqcap \alpha(S_2)$$
.

The meet preservation result.

• For any set S_1 ,

$$\alpha(\mathsf{post}_\mathcal{C}(n,S)) \sqsubseteq \mathsf{post}_L(n,\alpha(S))$$
.

This is a requirement.

• We can now lift the result to dataflow inequalities.

Soundness: Dataflow Inequalities

For a given program P,

Let $F(X) \subseteq X$ be the flow inequalities in the concrete domain.

Let $g(x) \sqsubseteq x$ be the flow inequalities in the abstract domain.

Obs. 1: F and g are structurally identical.

For example,

$$F: \mathsf{post}(\mathfrak{n}_0, X_0) \cup (X_1 \cap \llbracket I \rrbracket) \cup \mathsf{post}(\mathfrak{n}_1, X_1) \cup X_2 \ .$$

and

$$g : \mathsf{post}_{\mathsf{L}}(\mathsf{n}_0, \mathsf{x}_0) \sqcup (\mathsf{x}_1 \sqcap \alpha(\mathsf{I})) \sqcup \mathsf{post}(\mathsf{n}_1, \mathsf{x}_1) \sqcup \mathsf{x}_2$$
.

Reason: The generation of dataflow inequalities is "syntax-directed".

Obs. 2: $\alpha(F(X)) \sqsubseteq g(\alpha(x))$.

Proof: Build this up from proof for basic operations.

Soundness

Let L be a dataflow lattice such that

- 1. There exists a Galois connection between L and concrete domain C.
- 2. Post condition on L is sound, w.r.t post condition on C,

$$\alpha(\mathsf{post}(\mathsf{n},\mathsf{S})) \sqsubseteq \mathsf{post}_\mathsf{L}(\mathsf{n},\alpha(\mathsf{S}))$$
.

given program we get the dataflow inequalities:

 $F(X) \subseteq X$ on C and $g(x) \sqsubseteq x$ on L,

then, the <u>least fixed point</u> of g on L abstracts the LFP of F on C.

$$\mathsf{LFP}_{\mathsf{C}}(\mathsf{F}) \sqsubseteq \mathsf{LFP}_{\mathsf{L}}(\mathsf{g})$$
.