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The story so far...

Signs and Interval analyses: Lattice Inequalities.

[teration strategy for solving lattice inequalities.

X0 :f(J—)a X1 :f(XO)a

The iteration converges if the lattice is finite.
If the lattice is not finite, then iteration may diverge.

We used widening to force convergence.

Widening reaches a postfixed point




Ascending/Descending Iterations




Descending Iteration: Convergence

Descending Chain Condition: Dual to Ascending Chain

condition.

Descending iteration need not necessarily converge in finitely many

steps.

(1) Stop the iteration after some fixed number of steps.

This is not a good idea (for large programs).

(2) Use a “narrowing” operator to force convergence.




Narrowing

Let b C a, then a A b is intermediate to a, b.

bCaAbLCa.

Let a; Jay J a3z ... be an infinite decreasing iteration.

Narrowed iteration: Define sequence by, by, ... :
by =ajy, biy1 =bi A(air1).

(1) b; by J--- JbpN :bN_|_1 for N > 0.

(2) ming{a1,a2,...,} C bN.




Illustration:

Property:

If f(x) C x then f(x A f(x)) C x A f(x).

Therefore, result of narrowing 1s still part of the decreasing

1teration.




Interval Narrowing

Let [c,d] C [a,b]. Then [a,b] A lc,d] = [{,u].

C a=-—0&

{ =
a otherwise

d b=

b otherwise

Special case: x A L = 1.




Interval Narrowing: Examples




Updated picture with Widening/Narrowing sequence




Delayed Widening

In order to improve precision:

e First apply k > 0 regular iterations,
f(xY), ifi< k.

e Then apply widening iteration until post fixed point.

X = xTVF(x) .

e Similarly narrowing iteration can be delayed.
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Example: Delayed Widening
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With no delay in widening, we compute the fixed point at nq:

1€ [0,100] and j € [0, 0) .

With delay in widening (~ 5) step delay, we can compute:

1€ [0,100] and j € [0, 1].
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Where to widen?

Our current approach says widen everywhere.

Question: With delayless widening, what is the solution

computed at ns?
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Widening strategy

e Widening needs to be applied when there are loops in the code.

e Widening needs to be applied only at the loop heads:

i _ f(x;) if n; not a loop head

%

x;Vf(xj) if n; is the head of a loop

e Similarly, we need to narrow only at the heads of loops.




Widening Upto Operator

Current widening goes from finite to infinity in one step:
[0,01V[0, 1] = [0, 00), [0,1]V[-T1,1] = (—o00,1].

Upto set: A set of integer points. Eg.,
u={-1,0,1,100, 200, 1000}.

Widening upto operator Vy: choose the smallest bound from

the upto set to replace (if no bound exists, use +00).

Eg., [=1,5]Vul-1,6] = [-1,100], [1,10]Vul0, 10] = [-1,10],
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The Big Picture

e Signs Analysis: Compute a sign for every variable.

e Interval Analysis: Compute an interval for every variable.

e Are these analyses sound? What does soundness mean?
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Collecting Semantics

a.k.a “Concrete Interpretation”.

State: A program state is an assignment of integer values to

variables.

St (X1:V1, X2:V2, ...y Xn iVn) .

Let 2:Z x Z x --- x Z be the set of all program states.

Reachable states: Let Reach(n) C X be the set of all states

reaching a location n.




Concrete Interpretation

post(ng, Reach(ng)) € Reach(nq)

Reach(ns) C Reach(nq)

Reach(nj) C Reach(n;)

Reach(n,) N[y > 1] € Reach(ns)

Reach(nsz) N [¢p1] € Reach(ny)

post(ng, Reach(ng)) C Reach(ns)

post(ng, Reach(ng)) C Reach(ns)
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Reachable States

e The concrete lattice is C : 2* ordered by C.

e Reachable states can be expressed as a fix point of a monotonic

function over sets of states.

Reach(:) : {F(0) UF*(@) U --- U F™(()}.

e This is however, a purely theoretical exercise.
— The lattice of state sets 2* has infinite height.

— Arbitrary infinite sets cannot be represented inside a

computer.
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Galois Connections




Galois Connection

Consider two lattices (C,C) and (A, C).

A Galois Connection between C and A 1s a pair of functions
x:Cr— Aand yv:A— C, such that

foralSe Candae A, x(S)E aiff S Cy(a).

« 1s called the “Abstraction Map” and vy is called the

“Concretization Map”.
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Example #1: Signs Lattice

- ©
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v(c) = lc].




Example# 2: Interval Lattice

Let C:2% and A : Intervals.

o(X) = [min(X), max(X)

v([g,ul) =,ul ={z|{ <z < u}.

Verify the Galois connection.

(VI C Z, [£,u] € Intervals) «(I) T [, u] iff I C y([£,u]).




(Galois Connection: Intuition

oc . Sets of States — Abstraction (signs/intervals/...).

v : Abstraction — Sets of states it represents.

Question: What does a Galois connection mean?

If a abstracts a set S iff the concretization of a overapproximates S.




Galois Connection: “Best” abstraction & concretization

Property # 0: Derive « given v (and vice versa).

Idea:
“Best” abstraction of S should be the smallest abstract element

that contains S.

xp(S) =min{a | S Cy(a)}.

Similarly, “best” concretization given o is

Yola) = max{S | x(S) E aj.

Let us try to apply this to the two domains we have seen.




Galois Connection: Closure

Property # 1: (VSe€ C) S Cvy(«(S))
Proof:

«(S) C «(S).Therefore, S C y(x(S)).

Property # 2: (Vae€ A) «(y(a)) Ca

Proof:

v(a) € y(a).Therefore, x(y(a)) C a.




Galois Connection: Monotonicity

Property # 3: « and y are monotonic. I.e.,
If S] C Sz then O((S]) L 06(82) .

Similarly,

If a; € az then y(aq) Cy(az).

Proof: Let S; C S,. We know from Property #1 that
S, Cy(x(S2)). Therefore, S; C y(x(S2)). Applying Galois

connection definition, &(S7) C «(S>).

Similarly, we can prove the other part too.




Join Preservation

Property # 4: For all $S;,S, € C,

x(S1US2) = S7) U x(S3).

Proof: We rely on a sub-fact about lattices.

Fact: Iffora,be L, forallc €L,
alCc < bLCcthen a=D.




S1US; Cylce)

S1 Cylc), S2 Cvlc)
(X(S]) C c, OC(SZ) Lc

a(S1)Ua(S2)Ec
Now applying fact, we get

x(S1US2) = S1) U x(S2).




Meet Preservation

For all §4,S, € C,

x(S1MS2) = aS71) MafSy).

Proof: Use dual fact.




Monotone Function Theorem

Let f:C+— Cand g: A +— A be monotone functions on C, A

respectively.

g is a sound abstraction of f iff

vSeC, af(S)) E glx(S)).

Claim: «(LFP¢(f)) C LFPA(qg).
1. «(0) =L

2.¥n>0,VSeC, «f*(S)) C g™(x(S))

3. «(LFP(f)) C LFP(g).
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Proving Soundness of Abstract Interpretation




Background

We have a “concrete domain” C : 2> and abstract domain (L, C).

Fixed point inside lattice C : Reach(n).

Dataflow analysis inside lattice L: fp(n) (eg.,
sign(n, x), Rng(n,y)).

Goal: Relate concrete fixed point Reach(n) with abstract fixed
point fp; (n).

Let (x,v) be a galois connection between C and L.




Soundness: Basic Operations

We will establish o f C go «.

e For any sets S¢,S>,
x(S1US7) E x(S7) U (S2).
This 1s the join preservation result.

e For sets 51, S,,

(S1MNS2) C ax(S1)Ma(Sz).

The meet preservation result.



e For any set Sy,

a(posty(n,S)) C posty (n, x(S)).

This 1s a requirement.

e We can now lift the result to dataflow inequalities.




Soundness: Dataflow Inequalities

For a given program P,

Let F(X) C X be the flow inequalities in the concrete domain.

Let g(x) C x be the flow inequalities in the abstract domain.

Obs. 1: F and g are structurally identical.

For example,

F: post(ng, Xo) U (X7 N [I]) U post(ng, X7) U X>.

g : post; (1o, Xo) U (x1 Moe(I)) U post(ny,x1) Uxz.




Reason: The generation of dataflow inequalities is

“syntax-directed”.

Obs. 2: «(F(X)) C g(a(x)).

Proof: Build this up from proof for basic operations.




Soundness

Let L be a dataflow lattice such that

1. There exists a Galois connection between [ and concrete

domain C.

2. Post condition on L is sound, w.r.t post condition on C,

o(post(n,S)) C post; (n, «(S)).

given program we get the dataflow inequalities:
F(X)CXonC and g(x) Exon L,
then, the least fixed point of g on L abstracts the LEFP of F on C.

LFPc(F) E LFPr(g).




