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Programs, Flowcharts, etc...

Instances of Abstract Interpretation:

— Analysis #1: Sign Analysis.

— Analysis #2: Interval Analysis.
“Concrete” Interpretation.

Abstract Interpretation.



What 1s Abstract Interpretation?

Formal study of fixed points for program analysis applications.

e Program Verification Applications:
Astrée, PolySpace, CoVerity, Absinthe, F-Soft,
CodeSurfer, Fluctuat, Airac, TVLA, ...

e Denotational Semantics.

e Type Checking/Inference.




e There are numerous presentations of abstract interpretation.

e Our goal:

. Today: Understand the essence of the theory

(without too much “Greek”).

. Today & Wednesday: The actual theory.

. Wednesday: A quick guided tour through important

applications & research frontiers.

e Will try to be self-contained as much as possible.




Some History

Theory of inductive invariants: [Floyd, 1967] and [Hoare, 1969|.

Denotational Semantics: [Scott, Reynolds, Abramsky, ...]

Invariant Generation: [King, 1969; Manna & Katz, 1975]

Monotone frameworks for dataflow analysis: [Burstall, 1973|.

Linear equality invariant generation: [Karr, 1976]

Interval analysis: [Cousot & Cousot, 1976]

Abstract interpretation theory: [Cousot&Cousot, 1977]

Polyhedral Analysis: [Cousot & Halbwachs, 1978]

Recent advances & applications.




Programs

We will use a standard flowchart representation.

No-: y -

function foo ( int x )

inty = xxx+1;

ng:
while y > 1 do

if y%2 == 0 then
y=y/2
else
y=3xy-+1
end if

end while

end function




Program: Assumptions

For simplicity, we make the following assumptions about our

programs:

e All variables are integers or reals.

e No function calls.

e No pointers, arrays, compound objects.

Note: Real program analysis tools handle features such as

function calls, arrays, pointers and compound structures.




Signs Analysis

For each location n,

For each variable x,

“1 " if control never reaches n

“+7, if x > 0, whenever control reaches n,

sign(n,x) =4¢ “—" ifx<0, ---

“0" if x =0,

“T'"  otherwise

\




Signs Lattice

The symbols {L,+,—,0, T} correspond to the sets of natural

numbers:
[L] : O [T] : Z
[+ : {xlx>0}| [—] : {x|x <O}

Sets of natural numbers can be ordered by inclusion C.

@

C
(xlx >{{o>x<0} H © O

AN 2 s

The C induces a C relation in the sign domain.

C




Signs Analysis: Problem Statement

For each variable x, and each location n compute

the least element of the signs lattice ¢ such that

[c]l contains all the possible values of x seen when

control reaches location n.
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Signs Analysis: Least Solution

Assume input state sign(x,ng) : 4, sign(y,ng) : T.

Flowchart sign(y,n) | sign(x,n)

Yy = x*xx+1 T +

+ +
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Signs Analysis: Problem Statement (Attempt # 2)

For each variable x, and each location n compute
the least-element some element of the signs lattice

c such that [c] contains all the possible values of

X seen when control reaches location n.

e Least element of the lattice cannot be computed.
Proof: Reduce from Hilbert’s 10" problem.

e Trivial analysis result: sign(n,x): T at all locations!!

e [.east solution in the lattice.

1. Derive lattice inequalities for the overapproximations.

2. Solve them to derive a safe overapproximation.
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Signs Analysis: Data-flow equations

sign(ns,y) C sign(nq,y)

sign(ny,y) E sign(nz,y)
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Abstraction

Given a set of integers I, «(I) is the smallest value in the sign

lattice that covers it.

o (1) 2 min—{c € sign|[c] D I}.

Example:




Signs Analysis: Post-Condition

Consider an assignment y := expr(xi,...,Xn).

Post: Given the sign values of x1,...,x, before an assignment,

compute the sign value of y after the assignment.
post(n: y := expr, (sign(n,x1),...,sign(n,xn))).

Example: Consider assignment ng: y:=x*xx + 1

X

post(y :=--- ,sign(n, xJ)
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Computing post condition

Goal: Compute post(y := expr, (sign(n,xe),...,sign(n,xm))).

Just “follow” the expression syntax.

Example: Let expr:y—z—x+ 1 and
(sign(n,x) : “0”, sign(n,y) : “—" sign(n,z) : “+").

1. ply—z)=p(“ =" =4 =«
2. plly—2)—x) = p(* — —0") ="
3. p(((y—z)_x)_l_]):p(“_// _|_<<_|_//):((—|—//

. post(expr, (sign(n,x) : “0” sign(n,y) : “—" sign(n,z) : “+")) =T .
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Post condition: Example

Assignment ng: y:=x*xx+ 1.

X

post(y :=---

,sign(n, x))

Assignment ng : y:=3xy+ 1.

Y

post(y := - -

) )Sign(nay))

Assignment ng : y:=y/2.

Y

post(y :=---

,sign(mn,y))




Lattices, Monotonic Functions & Fixed Points

Poset: A set L with a partial order C.

Meet & Join:

alb max—{clc C a,c C b}

allb minc{claC c,b C c}

Lattice: Meets and Joins exists for every pair a, b.

(Therefore, meet and join exists every finite subset)

Complete Lattice: Every subset has a meet and a join.

(related concept: semi-complete lattice).
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Monotone function: f:L— L, s.t. aC b= f(a) C f(b).
Fixed Point: a = f(a).

Theorem: [Knaster, 1928; Tarski, 1953]

Eivery monotone function on a complete lattice has

a least and greatest fixed point.

LFP(f) max;(J_,f(J_),fZ(J_),...,)
GFP(f) min;(T,f(T),fZ(T),...,)
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Signs Analysis: Data-flow equations

post(no, sign(no,x)) C sign(n, y)

sign(ns,y) C sign(nq,y)

sign(n1,y) C sign(nz,y)

sign(ny,y) M “+” C sign(nz, y)

sign(nz,y) N“T"” C sign(ng,y)

post(na, sign(ns, y)) C sign(ns, y)

post(ne, sign(ne, y)) C sign(ns, y)




Signs Analysis: Data-flow equations

<(—|— !/

post(ny, sign(np, x)) U sign(ns,y)
Sign (Tl] y y)

sign(nz,y) M“4"

sign(nz,y) 1“T”

post(n4,sign(ns4,y)) U post(ng, sign(ne,y))

((_I_//
sign(ng, x) LI sign(ns, x)

sign(nq, x)

sign(ng, x) LI sign(mg, x) sign(nb5, x)
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Shorthand notation: x; : sign(ni,x) and y; : sign(ni,y).

We may write the (in)equalities as :

f](x])"')xn)y1)"')yn)

. Un)
.y Yn)

. Yn)




Inequations over a lattice

Let L be a lattice and fq,...,f,, be monotonic functions:

f;: Lx---xLe—L.

Corollary Knaster-Tarski Theorem: The inequality system
f](X],...,Xn) ;X1>f2(x1>"°>xn) EX2>°” ,fn(X],...,Xn) L Xp .

has a smallest and a greatest solution.

Furthermore, these solutions will satisfy:

f](X],...,Xn):X],...,fn(X],...,Xn):Xn.

Proof: -




Solving inequations over a lattice

Compute least solution for the lattice inequality system

f](X],...,Xn);X],fz(X],...,Xn)EXZ,“‘ ,fn(X],...,Xn) L Xn -

Initial solution: x? =1,...,x% = 1.

Iterative step:

f1(x3,x5,...

fr(xy, x5, ...

Stopping criteria: (Vj € [1,n]) x}“ C x}




Check that LHS functions are monotonic:
((—|—//
post(ny, sign(np, x)) U sign(ns,y)

Sign (Tl] y y)

sign(nz,y) M“+”

sign(nz,y) n«“T”
post(n4, sign(n4,y)) U post(ne, sign(ne,y))

«
_I_

sign(ng, x) LI sign(ms, x)

sign(nq, x)

sign(ng, x) LI sign(mg, x) sign(nb5, x)
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Signs Analysis:




Signs Analysis: Final solution.

Note: sign(n,x) = “4+" everywhere.

Yy = x*xx+1 sign(no,y) :

sign(ny,y) :

sign(nz,y) :

sign(nz,y): +

sign(n4(ne),y): +

sigh(ns,y): T




Solving Flow Inequations

Ascending Chain Condition:

There are no infinite chains: a1 Cay C ---C - - -

e If lattice L has ascending chain condition,

then solution converges in O(height(L) * |[CFG]|).

e The lattice sign has height of 3.

e [f height is not finite, then algorithm may not terminate.




Interval Analysis




Intervals: Basic Facts

Interval: z € [a, b] 2 {zla <z < b}

We will consider intervals of integer values.

Half-open Intervals: z € [a,0) and z € (—o0, al.

Interval Lattice: [a,b]C [c,d] if a > cADb < d.

Concretization: [[a,b]] ={z|la <z < b}

Abstraction: Given [ C Z, &(I) = [min<(I), max<(I)].



Interval Lattice

1,11 12,2]__13,3]_ [4,4]

e

Note: Lattice is complete.
However, it has infinite height (and width).
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Interval Analysis: Example # 2

(_OO> OO) L Rng(n0>x)

post(x := 0,Rng(no,x)) E Rng(ns,x)

Rng(n1 )X) L Rng(“’Z)X)

Rng(n,,x) Ma([x < 100]) C Rng(nz, x)

post(x := x+ 2,Rng(nz,x)) C Rng(nq,x)




Interval Analysis: Solving Dataflow Equations

Notation: R; : Rng(ny, x).

(_OO> OO) ; RO

post(ng, Ro) U post(nz, R3) C Ry

R1 E Ry

Ry M [O, 221 C Rz || L

T
[0, 0]
[0, 0]
1

-
0, 0]
0, 0]
0, 0]

0,1]
0,0
0,0]

This process converges in 100x steps to the following solution:

Ro: T, Ry: [0,100], Ry : [0,100], R3:

0,99] .




Interval Analysis: Example #3

(—00,00) E Rng(no, x)

[O> OO) E Rng(nO)n)

post(x := 0,Rng(no,x)) & Rng(ny,x)

Rng(ni,x) C Rng(ny, x)

Rng(n,,x) Ma([x < n]) E Rng(ns, x)

post(x := x4+ 2,Rng(nz,x)) C Rng(nq,x)




Solving Dataflow Eiquations

Notation: R; : Rng(ny, x).

(—00,00) E Ro T T

post(ng, Ro) U post(nsz, R3) C Ry [0,0] | [0, 0]

R1 E Ry 0,0] | [0, 0]
Rz M[0,00) E R3 1 [0, 0]

This process does not converge in finitely many steps.

The least fixed point solution is:
Ro: T, Ry: [0,00), Ry: [0,00), R3: [0, 00).

Question: How do we compute fixed points in the interval lattice?




Widening

e The Interval lattice has infinite height.

e Widening operator: Let [a,b] C [c, d].

la, b]V]c,d] = [{,u]

wherein

¢ —o0 ifc<aq,
¢ otherwise

and similarly,
oo 1fd>b,

b otherwise

e Special case: LVi=1.




Examples:

Widening: Examples




Widening: Properties

Properties: The following properties are true of widening.

(A) (WxCy) xUy ExVy

Let a1 C a; C a3z C --- be an increasing sequence.

Widened sequence: b; = ai, bi.1 =b;V(b; U ay).

Theorem: Widened sequence converges in finitely many steps, i.e.,

maxc{ay,...,} C bn.




Widening: Application

Consider Dataflow Inequalities:

f](X],...,Xn)

0

Initial step: <x1 e

Widening Iteration: We split iteration into two steps:
Step 1: <y%,...,y}1> — <f1 (xb, .., xh), ..

Step 2: (xit!, ... xET) = (x},...

Convergence: (Vj € [1,n]) y.




Widening: Example

Carry out the widening iteration for Example# 3.




Widening Iteration

e Widening iteration produces a solution to the dataflow

inequalities.

(Vj € [1,n]) f;(x},... . (1)

e However, there are two problems:

(a) Solution is no longer the least fixed point. Such solutions

are called post-fixed points.

(b) Solution improvement may be possible. By monotonicity,
f(x) E x = f(f(x)) C f(x).

Therefore, if x is a post-fixed point solution then f(x) may

be a smaller post-fixed point.




Ascending/Descending Iterations




Descending Iteration: Example #2

Carry out the widening iteration and descending iteration for

Example# 2.




Descending Iteration: Convergence

Descending Chain Condition: Dual to Ascending Chain

condition.

Descending iteration need not necessarily converge in finitely many

steps.

(1) Stop the iteration after some fixed number of steps.

This is not a good idea (provide an example).

(2) Use a “narrowing” operator to force convergence.




