CIS 670: Program Analysis

Title: Abstract Interpretation.

Guest Lecturer: Sriram Sankaranarayanan.

NEC Labs America,

Princeton, NJ.

srirams@nec-labs.com

Date: Oct 1st, 2007.

Topics

- Programs, Flowcharts, etc...
- Instances of Abstract Interpretation:
 - Analysis #1: Sign Analysis.
 - Analysis #2: Interval Analysis.
- "Concrete" Interpretation.
- Abstract Interpretation.

What is Abstract Interpretation?

Formal study of fixed points for program analysis applications.

- Program Verification Applications:
 Astrée, PolySpace, CoVerity, Absinthe, F-Soft,
 CodeSurfer, Fluctuat, Airac, TVLA, ...
- Denotational Semantics.
- Type Checking/Inference.

Goals

• There are numerous presentations of abstract interpretation.

- Our goal:
 - 1. Today: Understand the essence of the theory (without too much "Greek").
 - 2. Today & Wednesday: The actual theory.
 - 3. Wednesday: A quick guided tour through important applications & research frontiers.
- Will try to be self-contained as much as possible.

Some History

- Theory of inductive invariants: [Floyd, 1967] and [Hoare, 1969].
- Denotational Semantics: [Scott, Reynolds, Abramsky, ...]
- Invariant Generation: [King, 1969; Manna & Katz, 1975]
- Monotone frameworks for dataflow analysis: [Burstall, 1973].
- Linear equality invariant generation: [Karr, 1976]
- Interval analysis: [Cousot & Cousot, 1976]
- Abstract interpretation theory: [Cousot&Cousot, 1977]
- Polyhedral Analysis: [Cousot & Halbwachs, 1978]
- Recent advances & applications.

Programs

We will use a standard flowchart representation.

function foo (int x) int y := x * x + 1; while y > 1 do if y%2 == 0 then y = y/2else y = 3 * y + 1end if end while end function

Program: Assumptions

For simplicity, we make the following assumptions about our programs:

- All variables are integers or reals.
- No function calls.
- No pointers, arrays, compound objects.

Note: Real program analysis tools handle features such as function calls, arrays, pointers and compound structures.

Signs Analysis

For each location n, For each variable x,

Signs Lattice

The symbols $\{\bot, +, -, 0, \top\}$ correspond to the sets of natural numbers:

$$[\![\bot]\!]$$
 : \emptyset
 $[\![\top]\!]$
 : Z
 $[\![+]\!]$
 : $\{x|x>0\}$
 $[\![-]\!]$
 : $\{x|x<0\}$

Sets of natural numbers can be ordered by inclusion \subseteq .

The \subseteq induces a \sqsubseteq relation in the sign domain.

Signs Analysis: Problem Statement

For each variable x, and each location n compute the <u>least element</u> of the signs lattice c such that [c] contains <u>all the possible values of</u> x seen when control reaches location n.

Signs Analysis: Least Solution

Assume input state $sign(x, n_0) : +, sign(y, n_0) : \top$.

	Flowchart	sign(y,n)	sign(x,n)
n ₀ :	y := x * x + 1	Т	+
n ₁ :		+	+
n ₂ :	y > 1	+	+
n ₃ :	y%2 == 0	+	+
n ₄ :	y := y/2 $y := 3y + 1$	+	+
n ₅ :		+	+

Signs Analysis: Problem Statement (Attempt # 2)

For each variable x, and each location n compute the least element some element of the signs lattice c such that [c] contains all the possible values of x seen when control reaches location n.

- Least element of the lattice cannot be computed.
 Proof: Reduce from Hilbert's 10th problem.
- Trivial analysis result: sign(n, x) : T at all locations!!
- Least solution in the lattice.
 - 1. Derive lattice inequalities for the overapproximations.
 - 2. Solve them to derive a safe overapproximation.

Signs Analysis: Data-flow equations

$$\left[\operatorname{post}(n_0, \operatorname{sign}(n_0, x)) \right] \sqsubseteq \operatorname{sign}(n_1, y)$$

$$\operatorname{sign}(n_5, y) \sqsubseteq \operatorname{sign}(n_1, y)$$

$$\operatorname{sign}(n_1, y) \sqsubseteq \operatorname{sign}(n_2, y)$$

$$\operatorname{sign}(n_2, y) \sqcap \left[\alpha(\llbracket y > 1 \rrbracket) \right] \sqsubseteq \operatorname{sign}(n_3, y)$$

$$\operatorname{sign}(n_3, y) \sqcap \left[\alpha(\llbracket \phi_1 \rrbracket) \right] \sqsubseteq \operatorname{sign}(n_4, y)$$

$$\left[\operatorname{post}(n_4, \operatorname{sign}(n_4, y)) \right] \sqsubseteq \operatorname{sign}(n_5, y)$$

$$\left[\operatorname{post}(n_6, \operatorname{sign}(n_6, y)) \right] \sqsubseteq \operatorname{sign}(n_5, y)$$

Abstraction

Given a set of integers I , $\alpha(I)$ is the smallest value in the sign lattice that covers it.

$$\alpha(I) \stackrel{\Delta}{=} \min_{\sqsubseteq} \{c \in \text{sign} | \llbracket c \rrbracket \supseteq I \}.$$

Example:

I	$\alpha(I)$
$\left\{ x x>10\right\}$	+
$ \{x x <= 1\} $	Т
$ \{x x <= 0\} $	Т
$\{x x<0\}$	_
Ø	上

Signs Analysis: Post-Condition

Consider an assignment $y := \exp(x_1, ..., x_n)$.

Post: Given the <u>sign</u> values of $x_1, ..., x_n$ before an assignment, compute the sign value of y after the assignment.

$$post(n: y := expr, \langle sign(n, x_1), ..., sign(n, x_n) \rangle).$$

Example: Consider assignment $n_0: y := x * x + 1$

χ	上	+	0		T
$post(y := \cdots, sign(n, x))$		+	+	+	+

Computing post condition

Goal: Compute post(y := expr, $\langle sign(n, x_0), ..., sign(n, x_m) \rangle$).

Just "follow" the expression syntax.

Example: Let expr: y - z - x + 1 and

 $\langle \operatorname{sign}(\mathfrak{n}, \mathfrak{x}) : "0", \operatorname{sign}(\mathfrak{n}, \mathfrak{y}) : "-", \operatorname{sign}(\mathfrak{n}, \mathfrak{z}) : "+" \rangle.$

1.
$$p(y-z) = p("-"-"+") = "-"$$

2.
$$p((y-z)-x) = p("-"-"0") = "-"$$

3.
$$p(((y-z)-x)+1) = p("-"+"+") = "\top"$$

 \therefore post(expr, $\langle sign(n, x) : "0", sign(n, y) : "-", sign(n, z) : "+" \rangle) = <math>\top$.

Post condition: Example

Assignment $n_0: y := x * x + 1$.

χ		+	0	_	$oxed{\top}$
$post(y := \cdots, sign(n, x))$	上	+	+	+	<u> </u> +

Assignment $n_4: y := 3 * y + 1$.

y	上	+	0	_	Т
$post(y := \cdots, sign(n, y))$		+	+		Т

Assignment $n_6: y := y/2$.

y		+	0		Τ
$post(y := \cdots, sign(n, y))$	上	T	0	Т	Т

Lattices, Monotonic Functions & Fixed Points

Poset: A set L with a partial order \sqsubseteq .

Meet & Join:

$$a \sqcap b = \max_{\sqsubseteq} \{c | c \sqsubseteq a, c \sqsubseteq b\}$$

$$a \sqcup b = \min_{\square} \{c | a \sqsubseteq c, b \sqsubseteq c\}$$

Lattice: Meets and Joins exists for every pair a, b.

(Therefore, meet and join exists every finite subset)

Complete Lattice: Every subset has a meet and a join.

(related concept: semi-complete lattice).

Monotone function: $f: L \mapsto L$, s.t. $a \sqsubseteq b \Rightarrow f(a) \sqsubseteq f(b)$.

Fixed Point: a = f(a).

Theorem: [Knaster, 1928; Tarski, 1953]

Every monotone function on a complete lattice has a least and greatest fixed point.

Proof:

 $\mathsf{LFP}(\mathsf{f}) : \mathsf{max}_{\sqsubset}(\bot, \mathsf{f}(\bot), \mathsf{f}^2(\bot), \ldots,)$

 $\mathsf{GFP}(\mathsf{f}) : \mathsf{min}_{\sqsubseteq}(\top, \mathsf{f}(\top), \mathsf{f}^2(\top), \ldots,)$

Signs Analysis: Data-flow equations

$$\mathsf{post}(\mathfrak{n}_0,\mathsf{sign}(\mathfrak{n}_0,x))\sqsubseteq\mathsf{sign}(\mathfrak{n}_1,y)$$

$$\mathsf{sign}(\mathfrak{n}_5,\mathfrak{y})\sqsubseteq\mathsf{sign}(\mathfrak{n}_1,\mathfrak{y})$$

$$\mathsf{sign}(\mathfrak{n}_1,\mathfrak{y})\sqsubseteq\mathsf{sign}(\mathfrak{n}_2,\mathfrak{y})$$

$$sign(\mathfrak{n}_2,\mathfrak{y})\sqcap "+"\sqsubseteq sign(\mathfrak{n}_3,\mathfrak{y})$$

$$sign(n_3, y) \sqcap "\top" \sqsubseteq sign(n_4, y)$$

$$post(n_4, sign(n_4, y)) \sqsubseteq sign(n_5, y)$$

$$post(n_6, sign(n_6, y)) \sqsubseteq sign(n_5, y)$$

Signs Analysis: Data-flow equations

$$"T" \sqsubseteq sign(n_0,y)$$

$$post(n_0,sign(n_0,x)) \sqcup sign(n_5,y) \sqsubseteq sign(n_1,y)$$

$$sign(n_1,y) \sqsubseteq sign(n_2,y)$$

$$sign(n_2,y) \sqcap "+" \sqsubseteq sign(n_3,y)$$

$$sign(n_3,y) \sqcap "T" \sqsubseteq sign(n_4,y)$$

$$post(n_4,sign(n_4,y)) \sqcup post(n_6,sign(n_6,y)) \sqsubseteq sign(n_5,y)$$

$$"+" \sqsubseteq sign(n_0,x)$$

$$sign(n_0,x) \sqcup sign(n_5,x) \sqsubseteq sign(n_1,x)$$

$$sign(n_1,x) \sqsubseteq sign(n_2,x)$$

$$\vdots$$

$$sign(n_4,x) \sqcup sign(n_6,x) \sqsubseteq sign(n_5,x)$$

Shorthand notation: x_i : $sign(n_i, x)$ and y_i : $sign(n_i, y)$.

We may write the (in)equalities as:

$$f_1(x_1,\ldots,x_n,y_1,\ldots,y_n) \sqsubseteq y_1$$

$$f_n(x_1,\ldots,x_n,y_1,\ldots,y_n) \subseteq y_n$$

$$g_1(x_1,\ldots,x_n,y_1,\ldots,y_n) \subseteq x_1$$

:

$$g_n(x_1,\ldots,x_n,y_1,\ldots,y_n) \subseteq x_n$$

Inequations over a lattice

Let L be a lattice and f_1, \ldots, f_n be monotonic functions:

$$f_i: L \times \cdots \times L \mapsto L$$
.

Corollary Knaster-Tarski Theorem: The inequality system

$$f_1(x_1,\ldots,x_n) \sqsubseteq x_1, f_2(x_1,\ldots,x_n) \sqsubseteq x_2,\cdots, f_n(x_1,\ldots,x_n) \sqsubseteq x_n$$
.

has a smallest and a greatest solution.

Furthermore, these solutions will satisfy:

$$f_1(x_1,...,x_n) = x_1,...,f_n(x_1,...,x_n) = x_n$$
.

Proof: · · ·

Solving inequations over a lattice

Compute least solution for the lattice inequality system

$$f_1(x_1,\ldots,x_n) \sqsubseteq x_1, f_2(x_1,\ldots,x_n) \sqsubseteq x_2,\cdots, f_n(x_1,\ldots,x_n) \sqsubseteq x_n$$
.

Initial solution: $x_1^0 = \bot, ..., x_n^0 = \bot$.

Iterative step:

$$x_1^{i+1} = f_1(x_1^i, x_2^i, \dots, x_n^i),$$
 \vdots
 $x_n^{i+1} = f_n(x_1^i, x_2^i, \dots, x_n^i).$

Stopping criteria: $(\forall j \in [1, n]) x_j^{i+1} \sqsubseteq x_j^i$.

Check that LHS functions are monotonic:

$$"T" \sqsubseteq sign(n_0,y)$$

$$post(n_0,sign(n_0,x)) \sqcup sign(n_5,y) \sqsubseteq sign(n_1,y)$$

$$sign(n_1,y) \sqsubseteq sign(n_2,y)$$

$$sign(n_2,y) \sqcap "+" \sqsubseteq sign(n_3,y)$$

$$sign(n_3,y) \sqcap "T" \sqsubseteq sign(n_4,y)$$

$$post(n_4,sign(n_4,y)) \sqcup post(n_6,sign(n_6,y)) \sqsubseteq sign(n_5,y)$$

$$"+" \sqsubseteq sign(n_0,x)$$

$$sign(n_0,x) \sqcup sign(n_5,x) \sqsubseteq sign(n_1,x)$$

$$sign(n_1,x) \sqsubseteq sign(n_2,x)$$

$$\vdots$$

$$sign(n_4,x) \sqcup sign(n_6,x) \sqsubseteq sign(n_5,x)$$

Signs Analysis: Least Fixed Point Solution

x_0	yo	x ₁	y 1	x_2	y 2	x ₃	y ₃	x ₄	y 4	x ₅	y 5	x ₆	y 6
	1		1	\perp			\dashv		1	上	1	\Box	\perp
+	T			\perp			\perp				1	\perp	\perp
+	T	+	+	\perp	\perp		\perp		\perp	上		\perp	\perp
+	Т	+	+	+	+	上	上			上	1	上	\perp
+	Т	+	+	+	+	+	+			上		上	\perp
+	Т	+	+	+	+	+	+	+	+	上	上	+	+
+	Т	+	+	+	+	+	+	+	+	+	Т	+	+
+	Т	+	Т	+	+	+	+	+	+	+	Т	+	+
+	Т	+	Т	+	Т	+	+	+	+	+	Т	+	+
+	Т	+	Т	+	Т	+	+	+	+	+	Т	+	+

Signs Analysis: Final solution.

Note: sign(n, x) = "+" everywhere.

no:

$$y := x * x + 1$$

y > 1

y%2 == 0

 n_1 :

 n_2 :

 n_3 :

n₄:

y := y/2

 n_5 :

$$sign(n_0, y)$$
: \top

$$sign(n_1, y) : \top$$

$$sign(n_2, y)$$
: \top

$$sign(n_3, y): +$$

$$sign(n_4(n_6), y): +$$

$$sign(n_5, y) : \top$$

y := 3y + 1

Solving Flow Inequations

Ascending Chain Condition:

There are no infinite chains: $a_1 \sqsubset a_2 \sqsubset \cdots \sqsubset \cdots$.

If lattice L has ascending chain condition,
 then solution converges in O(height(L) * |CFG|).

• The lattice sign has height of 3.

• If height is not finite, then algorithm may not terminate.

Intervals: Basic Facts

Interval: $z \in [a, b] \stackrel{\Delta}{=} \{z | a \le z \le b\}$

We will consider intervals of integer values.

Half-open Intervals: $z \in [a, \infty)$ and $z \in (-\infty, a]$.

Interval Lattice: $[a, b] \sqsubseteq [c, d]$ iff $a \ge c \land b \le d$.

Concretization: $[[a,b]] = \{z | a \le z \le b\}$

Abstraction: Given $I \subseteq Z$, $\alpha(I) = [\min_{<}(I), \max_{<}(I)]$.

Note: Lattice is complete.

However, it has infinite height (and width).

Interval Analysis: Example # 2

$$n_0:$$
 $x:=0$
 $n_1:$
 $n_2:$
 $x<100$
 $x:=x+2$

$$(-\infty,\infty) \sqsubseteq \mathsf{Rng}(\mathfrak{n}_0,x)$$

$$\mathsf{post}(x \ := \ 0, \mathsf{Rng}(\mathfrak{n}_0, x)) \sqsubseteq \mathsf{Rng}(\mathfrak{n}_1, x)$$

$$\mathsf{Rng}(\mathfrak{n}_1, \mathfrak{x}) \sqsubseteq \mathsf{Rng}(\mathfrak{n}_2, \mathfrak{x})$$

$$\mathsf{Rng}(\mathfrak{n}_2,x) \sqcap \alpha(\llbracket x < 100 \rrbracket) \sqsubseteq \mathsf{Rng}(\mathfrak{n}_3,x)$$

$$\mathsf{post}(x \ := \ x+2, \mathsf{Rng}(n_3, x)) \sqsubseteq \mathsf{Rng}(n_1, x)$$

Interval Analysis: Solving Dataflow Equations

Notation: $R_i : Rng(n_i, x)$.

This process converges in 100x steps to the following solution:

$$R_0: T$$
, $R_1: [0,100]$, $R_2: [0,100]$, $R_3: [0,99]$.

Interval Analysis: Example #3

$$n_0$$
: $x := 0$
 n_1 :

 n_2 : $x < n$
 n_3 : $x := x + 2$

$$(-\infty, \infty) \sqsubseteq \operatorname{Rng}(\mathfrak{n}_0, x)$$
 $[0, \infty) \sqsubseteq \operatorname{Rng}(\mathfrak{n}_0, \mathfrak{n})$
 $\operatorname{post}(x := 0, \operatorname{Rng}(\mathfrak{n}_0, x)) \sqsubseteq \operatorname{Rng}(\mathfrak{n}_1, x)$
 $\operatorname{Rng}(\mathfrak{n}_1, x) \sqsubseteq \operatorname{Rng}(\mathfrak{n}_2, x)$
 $\operatorname{Rng}(\mathfrak{n}_2, x) \sqcap \alpha(\llbracket x < \mathfrak{n} \rrbracket) \sqsubseteq \operatorname{Rng}(\mathfrak{n}_3, x)$

Solving Dataflow Equations

Notation: $R_i : Rng(n_i, x)$.

This process does not converge in finitely many steps.

The least fixed point solution is:

$$R_0: T, R_1: [0,\infty), R_2: [0,\infty), R_3: [0,\infty).$$

Question: How do we compute fixed points in the interval lattice?

Widening

- The Interval lattice has infinite height.
- Widening operator: Let $[a, b] \sqsubseteq [c, d]$.

$$[a,b]\nabla[c,d] = [\ell,u]$$

wherein

$$\ell = \left\{ egin{array}{ll} -\infty & ext{if } c < lpha, \ c & ext{otherwise} \end{array}
ight.$$

and similarly,

$$u = \begin{cases} \infty & \text{if } d > b, \\ b & \text{otherwise} \end{cases}$$

• Special case: $\bot \nabla i = i$.

Widening: Examples

Examples:

$$[-1,-1] \quad \nabla \quad [-5,-5] \quad = \quad (-\infty,+\infty)$$

$$[1,1] \quad \nabla \quad [1,2] \quad = \quad [1,+\infty)$$

$$[1,1] \quad \nabla \quad [-1,1] \quad = \quad (-\infty,1]$$

$$[-1,5] \quad \nabla \quad [-1,5] \quad = \quad (-1,5)$$

$$\perp \quad \nabla \quad [10,100] \quad = \quad [10,100]$$

Widening: Properties

Properties: The following properties are true of widening.

(A)
$$(\forall x \sqsubseteq y) \ x \sqcup y \sqsubseteq x \nabla y$$

Let $a_1 \sqsubset a_2 \sqsubset a_3 \sqsubset \cdots$ be an increasing sequence.

Widened sequence: $b_1 = a_1$, $b_{i+1} = b_i \nabla (b_i \sqcup a_i)$.

Theorem: Widened sequence converges in finitely many steps, i.e.,

$$b_1 \sqsubseteq b_2 \sqsubseteq b_3 \cdots \sqsubseteq b_N = b_{N+1} = b_{N+2} \cdots$$
.

and

$$\text{max}_{\square}\{a_1,\ldots,\}\sqsubseteq b_N$$
.

Widening: Application

Consider Dataflow Inequalities:

$$f_1(x_1,\ldots,x_n) \subseteq x_1$$

:

$$f_n(x_1,\ldots,x_n) \subseteq x_n$$

Initial step: $\langle x_1^0, \dots, x_n^0 \rangle = \langle \bot, \dots, \bot \rangle$.

Widening Iteration: We split iteration into two steps:

Step 1:
$$\langle y_1^i, \dots, y_n^i \rangle = \langle f_1(x_1^i, \dots, x_n^i), \dots, f_n(x_1^i, \dots, x_n^i) \rangle$$
.

Step 2:
$$\langle x_1^{i+1}, \dots, x_n^{i+1} \rangle = \langle x_1^i, \dots, x_n^i \rangle \nabla \langle y_1^i, \dots, y_n^i \rangle$$
.

Convergence: $(\forall j \in [1, n]) \ y_j^N \sqsubseteq x_j^N$.

Widening: Example

Carry out the widening iteration for Example# 3.

Widening Iteration

• Widening iteration produces a solution to the dataflow inequalities.

$$(\forall j \in [1, n]) \ f_j(x_1^N, \dots, x_n^N) \sqsubseteq x_j. \tag{1}$$

- However, there are two problems:
 - (a) Solution is no longer the least fixed point. Such solutions are called post-fixed points.
 - (b) Solution improvement may be possible. By monotonicity,

$$f(x) \sqsubseteq x \Rightarrow f(f(x)) \sqsubseteq f(x)$$
.

Therefore, if x is a post-fixed point solution then f(x) may be a smaller post-fixed point.

Ascending/Descending Iterations

Descending Iteration: Example #2

Carry out the widening iteration and descending iteration for Example # 2.

Descending Iteration: Convergence

Descending Chain Condition: Dual to Ascending Chain condition.

Descending iteration need not necessarily converge in finitely many steps.

(1) Stop the iteration after some fixed number of steps. This is not a good idea (provide an example).

(2) Use a "narrowing" operator to force convergence.