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Overview

▶ We’ve seen that two-player zero sum games are special.

▶ They have a value, order of play doesn’t matter, equilibria can
be computed “easily”

▶ i.e. it does not require counterspeculation — don’t need to
reason about your opponent to compute a minmax strategy.

▶ But you need to understand the game extremely well and
make careful calculations.

▶ Is there a natural dynamic that leads to Nash equilibrium if
everyone uses it?

▶ How many of these properties depend on the “two player”
caveat?



Overview

▶ We’ve seen that two-player zero sum games are special.

▶ They have a value, order of play doesn’t matter, equilibria can
be computed “easily”

▶ i.e. it does not require counterspeculation — don’t need to
reason about your opponent to compute a minmax strategy.

▶ But you need to understand the game extremely well and
make careful calculations.

▶ Is there a natural dynamic that leads to Nash equilibrium if
everyone uses it?

▶ How many of these properties depend on the “two player”
caveat?



Overview

▶ We’ve seen that two-player zero sum games are special.

▶ They have a value, order of play doesn’t matter, equilibria can
be computed “easily”

▶ i.e. it does not require counterspeculation — don’t need to
reason about your opponent to compute a minmax strategy.

▶ But you need to understand the game extremely well and
make careful calculations.

▶ Is there a natural dynamic that leads to Nash equilibrium if
everyone uses it?

▶ How many of these properties depend on the “two player”
caveat?



Overview

▶ We’ve seen that two-player zero sum games are special.

▶ They have a value, order of play doesn’t matter, equilibria can
be computed “easily”

▶ i.e. it does not require counterspeculation — don’t need to
reason about your opponent to compute a minmax strategy.

▶ But you need to understand the game extremely well and
make careful calculations.

▶ Is there a natural dynamic that leads to Nash equilibrium if
everyone uses it?

▶ How many of these properties depend on the “two player”
caveat?



Overview

▶ We’ve seen that two-player zero sum games are special.

▶ They have a value, order of play doesn’t matter, equilibria can
be computed “easily”

▶ i.e. it does not require counterspeculation — don’t need to
reason about your opponent to compute a minmax strategy.

▶ But you need to understand the game extremely well and
make careful calculations.

▶ Is there a natural dynamic that leads to Nash equilibrium if
everyone uses it?

▶ How many of these properties depend on the “two player”
caveat?



Overview

▶ We’ve seen that two-player zero sum games are special.

▶ They have a value, order of play doesn’t matter, equilibria can
be computed “easily”

▶ i.e. it does not require counterspeculation — don’t need to
reason about your opponent to compute a minmax strategy.

▶ But you need to understand the game extremely well and
make careful calculations.

▶ Is there a natural dynamic that leads to Nash equilibrium if
everyone uses it?

▶ How many of these properties depend on the “two player”
caveat?



Two players?
Do these special properties carry over to general n player zero sum
games?

We can certainly define such games:

Definition
An n player game is zero-sum if for every action profile a ∈ A,∑n

i=1 ui (a) = 0.

The answer is no.
“Meta Theorem”: n player zero-sum games don’t have any
special properties that n − 1 player general sum games don’t have.

In particular, we should not expect such games to have a value,
nor that their equilibria should be easy to compute.
“Proof”: Any n − 1 player game can be made into an n player
zero sum game, by adding a new player n (with a trivial action
set), and un(a) = −

∑n−1
i=1 ui (a). Since player n is payoff irrelevant

to the n − 1 other players, the equilibrium structure remains
identical to the original game.
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But we can generalize with more structure...

Definition
A separable graphical game is defined by a graph G = (V ,E ). The
set of players corresponds to the set of vertices: P = V . Each
player’s utility function is decomposable as a sum of
neighbor-specific utility functions, one for each of his neighbors in
G :

ui (a) =
∑

(i ,j)∈E

u
(i ,j)
i (ai , aj)

i.e. it is as if each player is playing a 2-player game with each of
his neighbors – except he must pick a single action ai to play
simultaneously against each of his neighbors.
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Separable Graphical Games

Zero sum separable graphical games have many of the properties
of two player zero sum games:

1. They continue to have a value

2. Equilibria are easy to compute with efficient dynamics.

3. We don’t require each of the constituent 2-player games are
zero sum — just that the aggregate is.
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Regret

Definition
A sequence of action profiles a1, . . . , aT has regret ∆(T ) if for all
players i and actions a∗i we have:

1

T

T∑
t=1

ui (a
t) ≥ 1

T

T∑
t=1

ui (a
∗
i , a

t
−i )−∆(T )

We say that such an action sequence is no-regret if ∆(T ) = oT (1).

1. How to generate a sequence of no-regret play?

2. Have every player play polynomial weights. Then

∆(T ) = O(2
√

log k
T )

3. But not the only way...

4. A permissive family of dynamics.
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Dynamics
Given a sequence of action profiles a1, . . . , aT , write
āi =

1
T

∑T
i=1 a

t
i to denote the mixed strategy for player i that

selects an action in {a1i , . . . , aTi } uniformly at random.

Theorem
Consider any zero sum separable graphical game G. If a sequence
of action profiles a1, . . . , aT has regret ∆(T ), then the mixed
strategies:

(ā1, . . . , ān)

forms an n∆(T )-approximate Nash equilibrium.

If every player plays using polynomial weights, they converge to an
ϵ-approximate Nash equilibrium by in:

T =
4n2 log k

ϵ2

many rounds. In a two player game this is T = 16 log(k)/ϵ2 steps.
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āi =

1
T

∑T
i=1 a

t
i to denote the mixed strategy for player i that

selects an action in {a1i , . . . , aTi } uniformly at random.

Theorem
Consider any zero sum separable graphical game G. If a sequence
of action profiles a1, . . . , aT has regret ∆(T ), then the mixed
strategies:

(ā1, . . . , ān)

forms an n∆(T )-approximate Nash equilibrium.

If every player plays using polynomial weights, they converge to an
ϵ-approximate Nash equilibrium by in:

T =
4n2 log k

ϵ2

many rounds. In a two player game this is T = 16 log(k)/ϵ2 steps.



Proof

1. A useful fact: for every action a∗i ∈ Ai we have:

1

T

T∑
t=1

∑
(i ,j)∈E

ui ,ji (a∗i , a
t
j ) =

∑
(i ,j)∈E

T∑
t=1

1

T
ui ,ji (a∗i , a

t
j )

=
∑

(i ,j)∈E

ui ,ji (a∗i , āj)

2. Suppose every player i is playing according to āi . Let a
∗
i be

the best response of player i to the distribution of his
opponents. We know:∑

(i ,j)∈E

ui ,ji (a∗i , āj) ≥
∑

(i ,j)∈E

ui ,ji (āi , āj)
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Proof

1. We also know, since a1, . . . , at have ∆(T ) regret, that for all
i ∈ P:

1

T

T∑
t=1

∑
(i ,j)∈E

u
(i ,j)
i (ati , a

t
j )︸ ︷︷ ︸

LHS

≥
∑

(i ,j)∈E

u
(i ,j)
i (a∗i , āj)−∆(T )
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RHS

2. Summing the LHS over all players:
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i=1

∑
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0 = 0

(why?)
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Proof

1. Combining the bounds (LHS > RHS):

2.

n∆(T ) ≥
n∑

i=1

∑
(i ,j)∈E

u
(i ,j)
i (a∗i , āj)

=
n∑

i=1

 ∑
(i ,j)∈E

u
(i ,j)
i (a∗i , āj)−

∑
(i ,j)∈E

ui ,ji (āi , āj)


3. (why?)

4. Lets think about each term...
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=
n∑

i=1

 ∑
(i ,j)∈E

u
(i ,j)
i (a∗i , āj)−
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Thanks!

See you next class — stay healthy!


