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Overview

▶ We’ve started studying sequential learning...

▶ As predicting from expert advice.

▶ We made progress under a big assumption: A Perfect Expert.

▶ What do we do without that assumption?
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Review

The Setting:

▶ There are N experts who will make predictions in T rounds.

▶ At each round t, each expert i makes a prediction
pti ∈ {U,D} (up or down).

▶ We (the algorithm) aggregate these predictions somehow, to
make our own prediction ptA ∈ {U,D}. Then we learn the
true outcome ot ∈ {U,D}. If we predicted incorrectly (i.e.
ptA ̸= ot), then we made a mistake.

▶ Easy Case: there is one perfect expert who never makes a
mistake (but we don’t know who he is).
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The Halving Algorithm

Algorithm 1 The Halving Algorithm

Let S1 ← {1, . . . ,N} be the set of all experts.
for t = 1 to T do
Let S t

U = {i ∈ S : pti = U} be the set of experts in S t who
predict up, and S t

D = S t \ S t
U be the set who predict down.

Predict with the majority vote: If |S t
U | > |S t

D |, predict ptA = U,
else predict ptA = D.
Eliminate all experts that made a mistake: If oT = U, then let
S t+1 = S t

U , else let S t+1 = S t
D

end for



The Halving Algorithm

Theorem
If there is at least one perfect expert, the halving algorithm makes
at most logN mistakes.

Proof.

1. The algorithm predicts with the majority vote, so every time it
makes a mistake at some round t, at least half of the
remaining experts have made a mistake and are eliminated.

2. Hence |S t+1| ≤ |S t |/2.
3. On the other hand, the perfect expert is never eliminated.

4. Hence |S t | ≥ 1 for all t.

5. Since |S1| = N, this means there can be at most logN
mistakes.
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The Iterated Halving Algorithm

Algorithm 2 The Iterated Halving Algorithm

Let S1 ← {1, . . . ,N} be the set of all experts.
for t = 1 to T do
If |S t | = 0 Reset: Set S t ← {1, . . . ,N}.
Let S t

U = {i ∈ S : pti = U} be the set of experts in S t who
predict up, and S t

D = S t \ S t
U be the set who predict down.

Predict with the majority vote: If |S t
U | > |S t

D |, predict ptA = U,
else predict ptA = D.
Eliminate all experts that made a mistake: If oT = U, then let
S t+1 = S t

U , else let S t+1 = S t
D

end for



The Iterated Halving Algorithm

Theorem
The iterated halving algorithm makes at most log(N)(OPT+ 1)
mistakes.

Proof.

1. Whenever the algorithm makes a mistake, we eliminate half of
the experts.

2. So the algorithm can make at most logN mistakes between
any two resets.

3. But if we reset, it is because since the last reset, every expert
has made a mistake.

4. in particular, between any two resets, the best expert has
made at least 1 mistake.

5. This gives the claimed bound.
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Review

1. We should be able to do better though.

2. The above algorithm is wasteful in that every time we reset,
we forget what we have learned!

3. What should we do instead?

4. How about just downweight experts who make mistakes?
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The Weighted Majority Algorithm

Algorithm 3 The Weighted Majority Algorithm

Set weights w1
i ← 1 for all experts i .

for t = 1 to T do
Let W t

U =
∑

i :pti =U wi be the weight of experts who predict

up, and W t
D =

∑
i :pti =D wi be the weight of those who predict

down.
Predict with the weighted majority vote: If W t

U > W t
D , predict

ptA = U, else predict ptA = D.
Down-weight experts who made mistakes: For all i such that
pti ̸= ot , set w t+1

i ← w t
i /2

end for



The Weighted Majority Algorithm

Theorem
The weighted majority algorithm makes at most
2.4 (OPT+ log(N)) mistakes.

Note that log(N) is a fixed constant, so the ratio of mistakes the
algorithm makes compared to OPT is just 2.4 in the limit – not

great, but not bad.
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Proof
1. Let M be the total number of mistakes that the algorithm

makes.

2. Let W t =
∑

i w
t
i be the total weight at step t.

3. Observe: on any round t in which the algorithm makes a
mistake, at least half of the total weight (corresponding to
experts who made mistakes) is cut in half.

4. So: W t+1 ≤ (3/4)W t .

5. If the algorithm makes M mistakes, W T ≤ N · (3/4)M .

6. Let i∗ be the best expert. W T > wT
i = (1/2)OPT.

7. Together we have:(
1

2

)OPT

≤W ≤ N

(
3

4

)M

(
4

3

)M

≤ N · 2OPT

M ≤ 2.4(OPT+ log(N))
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Getting Greedy

We’ve been doing well! What do we want in an algorithm?

1. It to make only 1 times as many mistakes as the best expert
in the limit, rather than 2.4 times...

2. It to be able to handle N distinct actions (a separate action
for each expert), not just two (up and down)...

3. It to be able to handle experts having arbitrary costs in [0, 1]
at each round, not just binary costs (right vs. wrong)
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Getting Greedy

We want an algorithm that works in the following framework:

1. In rounds 1, . . . ,T , the algorithm chooses some expert i t .

2. Each expert i experiences a loss ℓti ∈ [0, 1]. The algorithm
experiences the loss of the expert it chooses: ℓtA = ℓti t .

3. The total loss of expert i is LTi =
∑T

t=1 ℓ
t
i , and the total loss

of the algorithm is LTA =
∑T

t=1 ℓ
t
A.

4. The goal of the algorithm is to obtain loss not much worse
than that of the best expert: mini L

T
i .

The polynomial weights algorithm can be viewed as a “smoothed”
version of the weighted majority algorithm

1. Has a parameter ϵ which controls how quickly it down-weights
experts.

2. Is randomized — chooses which expert to follow with
probability proportional to its weight.
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The Polynomial Weights Algorithm

Set weights w1
i ← 1 for all experts i .

for t = 1 to T do
Let W t =

∑N
i=1 w

t
i .

Choose expert i with probability w t
i /W

t .
For each i , set w t+1

i ← w t
i · (1− ϵℓti ).

end for



The Polynomial Weights Algorithm

Theorem
For any sequence of losses, and any expert k:
1
T E[LTPW ] ≤ 1

T LTk + ϵ+ ln(N)
ϵ·T . In particular, setting ϵ =

√
ln(N)
T :

1

T
E[LTPW ] ≤ 1

T
min
k

LTk + 2

√
ln(N)

T

1. The average loss of the algorithm quickly approaches the
average loss of the best expert exactly, at a rate of 1/

√
T .

2. This works against an arbitrary sequence of losses, which
might be chosen adaptively by an adversary.

3. So could ues it to play a game!

4. Experts ↔ Actions. Losses ↔ costs.

5. Don’t need to know much about the game. Just costs for
each action given what the opponents did.
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Proof

1. Let F t denote the expected loss of the algorithm at time t.

2. E[LTPW ] =
∑T

t=1 F
t .

3. We also know:

F t =

∑N
i=1 w

t
i ℓ

t
i

W t

4. W 1 = N, and:

W t+1 = W t −
N∑
i=1

ϵw t
i ℓ

t
i = W t(1− ϵF t)

5. So by induction:

W T+1 = N
T∏
t=1

(1− ϵF t)
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Proof
1. Taking the log, and using ln(1− x) ≤ −x :

ln(W t+1) = ln(N) +
T∑
t=1

ln(1− ϵF t)

≤ ln(N)− ϵ
T∑
t=1

F t

= ln(N)− ϵE[LTPW ]

2. Similarly, using ln(1− x) ≥ −x − x2 for 0 < x < 1
2 :

ln(W T+1) ≥ ln(wT+1
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=
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≥ −ϵLTk − ϵ2T



Proof
1. Taking the log, and using ln(1− x) ≤ −x :

ln(W t+1) = ln(N) +
T∑
t=1

ln(1− ϵF t)

≤ ln(N)− ϵ

T∑
t=1

F t

= ln(N)− ϵE[LTPW ]

2. Similarly, using ln(1− x) ≥ −x − x2 for 0 < x < 1
2 :

ln(W T+1) ≥ ln(wT+1
k )

=
T∑
t=1

ln(1− ϵℓtk)

≥ −
T∑
t=1

ϵℓtk −
T∑
t=1

(ϵℓtk)
2

≥ −ϵLTk − ϵ2T



Proof
1. Taking the log, and using ln(1− x) ≤ −x :

ln(W t+1) = ln(N) +
T∑
t=1

ln(1− ϵF t)

≤ ln(N)− ϵ

T∑
t=1

F t

= ln(N)− ϵE[LTPW ]

2. Similarly, using ln(1− x) ≥ −x − x2 for 0 < x < 1
2 :

ln(W T+1) ≥ ln(wT+1
k )

=
T∑
t=1

ln(1− ϵℓtk)

≥ −
T∑
t=1

ϵℓtk −
T∑
t=1

(ϵℓtk)
2

≥ −ϵLTk − ϵ2T



Proof
1. Taking the log, and using ln(1− x) ≤ −x :

ln(W t+1) = ln(N) +
T∑
t=1

ln(1− ϵF t)

≤ ln(N)− ϵ

T∑
t=1

F t

= ln(N)− ϵE[LTPW ]

2. Similarly, using ln(1− x) ≥ −x − x2 for 0 < x < 1
2 :

ln(W T+1) ≥ ln(wT+1
k )

=
T∑
t=1

ln(1− ϵℓtk)

≥ −
T∑
t=1

ϵℓtk −
T∑
t=1

(ϵℓtk)
2

≥ −ϵLTk − ϵ2T



Proof
1. Taking the log, and using ln(1− x) ≤ −x :

ln(W t+1) = ln(N) +
T∑
t=1

ln(1− ϵF t)

≤ ln(N)− ϵ

T∑
t=1

F t

= ln(N)− ϵE[LTPW ]

2. Similarly, using ln(1− x) ≥ −x − x2 for 0 < x < 1
2 :

ln(W T+1) ≥ ln(wT+1
k )

=
T∑
t=1

ln(1− ϵℓtk)

≥ −
T∑
t=1

ϵℓtk −
T∑
t=1

(ϵℓtk)
2

≥ −ϵLTk − ϵ2T



Proof
1. Taking the log, and using ln(1− x) ≤ −x :

ln(W t+1) = ln(N) +
T∑
t=1

ln(1− ϵF t)

≤ ln(N)− ϵ

T∑
t=1

F t

= ln(N)− ϵE[LTPW ]

2. Similarly, using ln(1− x) ≥ −x − x2 for 0 < x < 1
2 :

ln(W T+1) ≥ ln(wT+1
k )

=
T∑
t=1

ln(1− ϵℓtk)

≥ −
T∑
t=1

ϵℓtk −
T∑
t=1

(ϵℓtk)
2

≥ −ϵLTk − ϵ2T



Proof
1. Taking the log, and using ln(1− x) ≤ −x :

ln(W t+1) = ln(N) +
T∑
t=1

ln(1− ϵF t)

≤ ln(N)− ϵ

T∑
t=1

F t

= ln(N)− ϵE[LTPW ]

2. Similarly, using ln(1− x) ≥ −x − x2 for 0 < x < 1
2 :

ln(W T+1) ≥ ln(wT+1
k )

=
T∑
t=1

ln(1− ϵℓtk)

≥ −
T∑
t=1

ϵℓtk −
T∑
t=1

(ϵℓtk)
2

≥ −ϵLTk − ϵ2T



Proof

1. Combining these two bounds, we get:

ln(N)− ϵLTPW ≥ −ϵLTk − ϵ2T

for all k .

2. Dividing by ϵ and rearranging:

LTPW ≤ min
k

LTk + ϵT +
ln(N)

ϵ

3. Fin.
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Thanks!

See you next class!


