
The Polynomial Weights Algorithm:
Warmup

Aaron Roth

University of Pennsylvania

January 29 2025

Overview

▶ We’ve studied when Best Responds Dynamics converges...

▶ But it doesn’t always, even in simple games.

▶ Even if they have pure strategy Nash equilibria! (Example)

▶ In such games, how should players behave?

▶ This lecture: learning in games.

▶ First we’ll abstract away the game...

Overview

▶ We’ve studied when Best Responds Dynamics converges...

▶ But it doesn’t always, even in simple games.

▶ Even if they have pure strategy Nash equilibria! (Example)

▶ In such games, how should players behave?

▶ This lecture: learning in games.

▶ First we’ll abstract away the game...

Overview

▶ We’ve studied when Best Responds Dynamics converges...

▶ But it doesn’t always, even in simple games.

▶ Even if they have pure strategy Nash equilibria! (Example)

▶ In such games, how should players behave?

▶ This lecture: learning in games.

▶ First we’ll abstract away the game...

Overview

▶ We’ve studied when Best Responds Dynamics converges...

▶ But it doesn’t always, even in simple games.

▶ Even if they have pure strategy Nash equilibria! (Example)

▶ In such games, how should players behave?

▶ This lecture: learning in games.

▶ First we’ll abstract away the game...

Overview

▶ We’ve studied when Best Responds Dynamics converges...

▶ But it doesn’t always, even in simple games.

▶ Even if they have pure strategy Nash equilibria! (Example)

▶ In such games, how should players behave?

▶ This lecture: learning in games.

▶ First we’ll abstract away the game...

Overview

▶ We’ve studied when Best Responds Dynamics converges...

▶ But it doesn’t always, even in simple games.

▶ Even if they have pure strategy Nash equilibria! (Example)

▶ In such games, how should players behave?

▶ This lecture: learning in games.

▶ First we’ll abstract away the game...

Sequential Prediction

A simple example—Stock prediction:

1. Every day GME goes up or down.

2. Your goal: Predict direction each day before the market opens
(so you can buy or short)

3. The market can behave arbitrarily/adversarially... So no way
you can promise to do well.

4. But... You get advice.

Sequential Prediction

A simple example—Stock prediction:

1. Every day GME goes up or down.

2. Your goal: Predict direction each day before the market opens
(so you can buy or short)

3. The market can behave arbitrarily/adversarially... So no way
you can promise to do well.

4. But... You get advice.

Sequential Prediction

A simple example—Stock prediction:

1. Every day GME goes up or down.

2. Your goal: Predict direction each day before the market opens
(so you can buy or short)

3. The market can behave arbitrarily/adversarially... So no way
you can promise to do well.

4. But... You get advice.

Sequential Prediction

A simple example—Stock prediction:

1. Every day GME goes up or down.

2. Your goal: Predict direction each day before the market opens
(so you can buy or short)

3. The market can behave arbitrarily/adversarially... So no way
you can promise to do well.

4. But... You get advice.

Sequential Prediction

A simple example—Stock prediction:

1. Every day GME goes up or down.

2. Your goal: Predict direction each day before the market opens
(so you can buy or short)

3. The market can behave arbitrarily/adversarially... So no way
you can promise to do well.

4. But... You get advice.

Sequential Prediction

Expert Advice:

1. Before the bell every day, N experts whisper in your ear a
guess: (U)p or (D)own.

2. Self-proclaimed “experts” — no promise they know what they
are talking about.

3. Your goal: Aggregate expert advice so that after awhile you
do (almost) as well as the best expert in hindsight.

4. Lets start with an easier case.

Sequential Prediction

Expert Advice:

1. Before the bell every day, N experts whisper in your ear a
guess: (U)p or (D)own.

2. Self-proclaimed “experts” — no promise they know what they
are talking about.

3. Your goal: Aggregate expert advice so that after awhile you
do (almost) as well as the best expert in hindsight.

4. Lets start with an easier case.

Sequential Prediction

Expert Advice:

1. Before the bell every day, N experts whisper in your ear a
guess: (U)p or (D)own.

2. Self-proclaimed “experts” — no promise they know what they
are talking about.

3. Your goal: Aggregate expert advice so that after awhile you
do (almost) as well as the best expert in hindsight.

4. Lets start with an easier case.

Sequential Prediction

Expert Advice:

1. Before the bell every day, N experts whisper in your ear a
guess: (U)p or (D)own.

2. Self-proclaimed “experts” — no promise they know what they
are talking about.

3. Your goal: Aggregate expert advice so that after awhile you
do (almost) as well as the best expert in hindsight.

4. Lets start with an easier case.

An Easier Case

▶ There are N experts who will make predictions in T rounds.

▶ At each round t, each expert i makes a prediction
pti ∈ {U,D} (up or down).

▶ We (the algorithm) aggregate these predictions somehow, to
make our own prediction ptA ∈ {U,D}. Then we learn the
true outcome ot ∈ {U,D}. If we predicted incorrectly (i.e.
ptA ̸= ot), then we made a mistake.

▶ To make things easy, we will assume at first that there is one
perfect expert who never makes a mistake (but we don’t know
who he is).

Can we find a strategy that is guaranteed to make at most log(N)
mistakes?

An Easier Case

▶ There are N experts who will make predictions in T rounds.

▶ At each round t, each expert i makes a prediction
pti ∈ {U,D} (up or down).

▶ We (the algorithm) aggregate these predictions somehow, to
make our own prediction ptA ∈ {U,D}. Then we learn the
true outcome ot ∈ {U,D}. If we predicted incorrectly (i.e.
ptA ̸= ot), then we made a mistake.

▶ To make things easy, we will assume at first that there is one
perfect expert who never makes a mistake (but we don’t know
who he is).

Can we find a strategy that is guaranteed to make at most log(N)
mistakes?

An Easier Case

▶ There are N experts who will make predictions in T rounds.

▶ At each round t, each expert i makes a prediction
pti ∈ {U,D} (up or down).

▶ We (the algorithm) aggregate these predictions somehow, to
make our own prediction ptA ∈ {U,D}. Then we learn the
true outcome ot ∈ {U,D}. If we predicted incorrectly (i.e.
ptA ̸= ot), then we made a mistake.

▶ To make things easy, we will assume at first that there is one
perfect expert who never makes a mistake (but we don’t know
who he is).

Can we find a strategy that is guaranteed to make at most log(N)
mistakes?

An Easier Case

▶ There are N experts who will make predictions in T rounds.

▶ At each round t, each expert i makes a prediction
pti ∈ {U,D} (up or down).

▶ We (the algorithm) aggregate these predictions somehow, to
make our own prediction ptA ∈ {U,D}. Then we learn the
true outcome ot ∈ {U,D}. If we predicted incorrectly (i.e.
ptA ̸= ot), then we made a mistake.

▶ To make things easy, we will assume at first that there is one
perfect expert who never makes a mistake (but we don’t know
who he is).

Can we find a strategy that is guaranteed to make at most log(N)
mistakes?

An Easier Case

▶ There are N experts who will make predictions in T rounds.

▶ At each round t, each expert i makes a prediction
pti ∈ {U,D} (up or down).

▶ We (the algorithm) aggregate these predictions somehow, to
make our own prediction ptA ∈ {U,D}. Then we learn the
true outcome ot ∈ {U,D}. If we predicted incorrectly (i.e.
ptA ̸= ot), then we made a mistake.

▶ To make things easy, we will assume at first that there is one
perfect expert who never makes a mistake (but we don’t know
who he is).

Can we find a strategy that is guaranteed to make at most log(N)
mistakes?

The Halving Algorithm

Algorithm 1 The Halving Algorithm

Let S1 ← {1, . . . ,N} be the set of all experts.
for t = 1 to T do
Let S t

U = {i ∈ S : pti = U} be the set of experts in S t who
predict up, and S t

D = S t \ S t
U be the set who predict down.

Predict with the majority vote: If |S t
U | > |S t

D |, predict ptA = U,
else predict ptA = D.
Eliminate all experts that made a mistake: If oT = U, then let
S t+1 = S t

U , else let S t+1 = S t
D

end for

The Halving Algorithm

Theorem
If there is at least one perfect expert, the halving algorithm makes
at most logN mistakes.

Proof.

1. The algorithm predicts with the majority vote, so every time it
makes a mistake at some round t, at least half of the
remaining experts have made a mistake and are eliminated.

2. Hence |S t+1| ≤ |S t |/2.
3. On the other hand, the perfect expert is never eliminated.

4. Hence |S t | ≥ 1 for all t.

5. Since |S1| = N, this means there can be at most logN
mistakes.

The Halving Algorithm

Theorem
If there is at least one perfect expert, the halving algorithm makes
at most logN mistakes.

Proof.

1. The algorithm predicts with the majority vote, so every time it
makes a mistake at some round t, at least half of the
remaining experts have made a mistake and are eliminated.

2. Hence |S t+1| ≤ |S t |/2.
3. On the other hand, the perfect expert is never eliminated.

4. Hence |S t | ≥ 1 for all t.

5. Since |S1| = N, this means there can be at most logN
mistakes.

The Halving Algorithm

Theorem
If there is at least one perfect expert, the halving algorithm makes
at most logN mistakes.

Proof.

1. The algorithm predicts with the majority vote, so every time it
makes a mistake at some round t, at least half of the
remaining experts have made a mistake and are eliminated.

2. Hence |S t+1| ≤ |S t |/2.

3. On the other hand, the perfect expert is never eliminated.

4. Hence |S t | ≥ 1 for all t.

5. Since |S1| = N, this means there can be at most logN
mistakes.

The Halving Algorithm

Theorem
If there is at least one perfect expert, the halving algorithm makes
at most logN mistakes.

Proof.

1. The algorithm predicts with the majority vote, so every time it
makes a mistake at some round t, at least half of the
remaining experts have made a mistake and are eliminated.

2. Hence |S t+1| ≤ |S t |/2.
3. On the other hand, the perfect expert is never eliminated.

4. Hence |S t | ≥ 1 for all t.

5. Since |S1| = N, this means there can be at most logN
mistakes.

The Halving Algorithm

Theorem
If there is at least one perfect expert, the halving algorithm makes
at most logN mistakes.

Proof.

1. The algorithm predicts with the majority vote, so every time it
makes a mistake at some round t, at least half of the
remaining experts have made a mistake and are eliminated.

2. Hence |S t+1| ≤ |S t |/2.
3. On the other hand, the perfect expert is never eliminated.

4. Hence |S t | ≥ 1 for all t.

5. Since |S1| = N, this means there can be at most logN
mistakes.

The Halving Algorithm

Theorem
If there is at least one perfect expert, the halving algorithm makes
at most logN mistakes.

Proof.

1. The algorithm predicts with the majority vote, so every time it
makes a mistake at some round t, at least half of the
remaining experts have made a mistake and are eliminated.

2. Hence |S t+1| ≤ |S t |/2.
3. On the other hand, the perfect expert is never eliminated.

4. Hence |S t | ≥ 1 for all t.

5. Since |S1| = N, this means there can be at most logN
mistakes.

The Halving Algorithm

Is this bound any good?

1. Of course we’ve made a big assumption: a perfect expert.

2. But logN is pretty small even if N is large (e.g. if N = 1024,
logN = 10, if N = 1, 048, 576, logN = 20)

3. And the bound doesn’t grow with T , so even with a huge
number of experts, the average number of mistakes made by
this algorithm is tiny.

4. But what if no expert is perfect? Say the best expert makes
OPT mistakes.

5. Can we find a way to make not too many more than OPT
mistakes?

The Halving Algorithm

Is this bound any good?

1. Of course we’ve made a big assumption: a perfect expert.

2. But logN is pretty small even if N is large (e.g. if N = 1024,
logN = 10, if N = 1, 048, 576, logN = 20)

3. And the bound doesn’t grow with T , so even with a huge
number of experts, the average number of mistakes made by
this algorithm is tiny.

4. But what if no expert is perfect? Say the best expert makes
OPT mistakes.

5. Can we find a way to make not too many more than OPT
mistakes?

The Halving Algorithm

Is this bound any good?

1. Of course we’ve made a big assumption: a perfect expert.

2. But logN is pretty small even if N is large (e.g. if N = 1024,
logN = 10, if N = 1, 048, 576, logN = 20)

3. And the bound doesn’t grow with T , so even with a huge
number of experts, the average number of mistakes made by
this algorithm is tiny.

4. But what if no expert is perfect? Say the best expert makes
OPT mistakes.

5. Can we find a way to make not too many more than OPT
mistakes?

The Halving Algorithm

Is this bound any good?

1. Of course we’ve made a big assumption: a perfect expert.

2. But logN is pretty small even if N is large (e.g. if N = 1024,
logN = 10, if N = 1, 048, 576, logN = 20)

3. And the bound doesn’t grow with T , so even with a huge
number of experts, the average number of mistakes made by
this algorithm is tiny.

4. But what if no expert is perfect? Say the best expert makes
OPT mistakes.

5. Can we find a way to make not too many more than OPT
mistakes?

The Halving Algorithm

Is this bound any good?

1. Of course we’ve made a big assumption: a perfect expert.

2. But logN is pretty small even if N is large (e.g. if N = 1024,
logN = 10, if N = 1, 048, 576, logN = 20)

3. And the bound doesn’t grow with T , so even with a huge
number of experts, the average number of mistakes made by
this algorithm is tiny.

4. But what if no expert is perfect? Say the best expert makes
OPT mistakes.

5. Can we find a way to make not too many more than OPT
mistakes?

The Halving Algorithm

Is this bound any good?

1. Of course we’ve made a big assumption: a perfect expert.

2. But logN is pretty small even if N is large (e.g. if N = 1024,
logN = 10, if N = 1, 048, 576, logN = 20)

3. And the bound doesn’t grow with T , so even with a huge
number of experts, the average number of mistakes made by
this algorithm is tiny.

4. But what if no expert is perfect? Say the best expert makes
OPT mistakes.

5. Can we find a way to make not too many more than OPT
mistakes?

The Iterated Halving Algorithm

Algorithm 2 The Iterated Halving Algorithm

Let S1 ← {1, . . . ,N} be the set of all experts.
for t = 1 to T do
If |S t | = 0 Reset: Set S t ← {1, . . . ,N}.
Let S t

U = {i ∈ S : pti = U} be the set of experts in S t who
predict up, and S t

D = S t \ S t
U be the set who predict down.

Predict with the majority vote: If |S t
U | > |S t

D |, predict ptA = U,
else predict ptA = D.
Eliminate all experts that made a mistake: If oT = U, then let
S t+1 = S t

U , else let S t+1 = S t
D

end for

The Iterated Halving Algorithm

Theorem
The iterated halving algorithm makes at most log(N)(OPT+ 1)
mistakes.

Proof.

1. Whenever the algorithm makes a mistake, we eliminate half of
the experts.

2. So the algorithm can make at most logN mistakes between
any two resets.

3. But if we reset, it is because since the last reset, every expert
has made a mistake.

4. in particular, between any two resets, the best expert has
made at least 1 mistake.

5. This gives the claimed bound.

The Iterated Halving Algorithm

Theorem
The iterated halving algorithm makes at most log(N)(OPT+ 1)
mistakes.

Proof.

1. Whenever the algorithm makes a mistake, we eliminate half of
the experts.

2. So the algorithm can make at most logN mistakes between
any two resets.

3. But if we reset, it is because since the last reset, every expert
has made a mistake.

4. in particular, between any two resets, the best expert has
made at least 1 mistake.

5. This gives the claimed bound.

The Iterated Halving Algorithm

Theorem
The iterated halving algorithm makes at most log(N)(OPT+ 1)
mistakes.

Proof.

1. Whenever the algorithm makes a mistake, we eliminate half of
the experts.

2. So the algorithm can make at most logN mistakes between
any two resets.

3. But if we reset, it is because since the last reset, every expert
has made a mistake.

4. in particular, between any two resets, the best expert has
made at least 1 mistake.

5. This gives the claimed bound.

The Iterated Halving Algorithm

Theorem
The iterated halving algorithm makes at most log(N)(OPT+ 1)
mistakes.

Proof.

1. Whenever the algorithm makes a mistake, we eliminate half of
the experts.

2. So the algorithm can make at most logN mistakes between
any two resets.

3. But if we reset, it is because since the last reset, every expert
has made a mistake.

4. in particular, between any two resets, the best expert has
made at least 1 mistake.

5. This gives the claimed bound.

The Iterated Halving Algorithm

Theorem
The iterated halving algorithm makes at most log(N)(OPT+ 1)
mistakes.

Proof.

1. Whenever the algorithm makes a mistake, we eliminate half of
the experts.

2. So the algorithm can make at most logN mistakes between
any two resets.

3. But if we reset, it is because since the last reset, every expert
has made a mistake.

4. in particular, between any two resets, the best expert has
made at least 1 mistake.

5. This gives the claimed bound.

The Iterated Halving Algorithm

Theorem
The iterated halving algorithm makes at most log(N)(OPT+ 1)
mistakes.

Proof.

1. Whenever the algorithm makes a mistake, we eliminate half of
the experts.

2. So the algorithm can make at most logN mistakes between
any two resets.

3. But if we reset, it is because since the last reset, every expert
has made a mistake.

4. in particular, between any two resets, the best expert has
made at least 1 mistake.

5. This gives the claimed bound.

The Iterated Halving Algorithm

1. We should be able to do better though.

2. The above algorithm is wasteful in that every time we reset,
we forget what we have learned!

3. What should we do instead?

4. To be continued...

The Iterated Halving Algorithm

1. We should be able to do better though.

2. The above algorithm is wasteful in that every time we reset,
we forget what we have learned!

3. What should we do instead?

4. To be continued...

The Iterated Halving Algorithm

1. We should be able to do better though.

2. The above algorithm is wasteful in that every time we reset,
we forget what we have learned!

3. What should we do instead?

4. To be continued...

The Iterated Halving Algorithm

1. We should be able to do better though.

2. The above algorithm is wasteful in that every time we reset,
we forget what we have learned!

3. What should we do instead?

4. To be continued...

Thanks!

See you next class — stay healthy!

