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» In this class, we've frequently used techniques from machine
learning to solve game theory problems: Equilibrium
computation, online auctions, dynamic pricing, ...

» Today: the reverse direction: We can derive ML algorithms
from game theoretic arguments (the minimax theorem)

» In fact, in a strong sense, learning algorithms like polynomial
weights are equivalent to the minimax theorem.
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» You turn on your TV, and the weatherman tells you that there
is a 10% chance of rain.

» What does this mean? Today only happens once; not a
repeatable event.

» If it doesn't rain, was he wrong? What if it rains?

» Is there any way we can test if the weatherman knows what
he is doing?
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Lets write down a simple model — the weather prediction game.
Inroundst =1to T:

1. The prediction player predicts some probability p; of rain, for
pt €{0,1/m,2/m,...,(m—1)/m,1}.

2. The outcome y; € {0,1} is revealed: it either rains (y; = 1)
or it does not (y; = 0).

» Can we devise a test to determine whether the weatherman
knows what he is doing?
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Devising a Test

» Suppose every day, a probability p} is revealed to the
weatherman, and then it rains with that probability:

Priy: = 1] = p;.
> |If the weatherman predicts p; = p; he should pass the test.
Call him “the oracular weatherman”

» It should also be possible to fail the test.
> A first attempt:

Definition (Average Consistency)

A prediction strategy satisfies € average consistency if for every
sequence of outcomes, the sequence of predictions it generates

(p1,y1,--.,PT,yT) Satisfies
1 T T

We say it satisfies average consistency if ¢ — 0 as T — oc.
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Devising a Test

v

The oracular weatherman passes this test (Remember the
Chernoff-Hoeffding bound!)

But the test seems too easy to pass...

Consider the "yesterday weatherman”: "On day 1, predict
p1 =0, and on day t, predict p = y;_1".

(Just predicts that whatever happened yesterday happens
today)

%ZtT:lPt—ZtT:U’T =yr/T<1T
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Devising a Test

» Easy to differentiate the yesterday weatherman from the
oracular weatherman. (How?)

» When the oracular weatherman predicts a 100% chance of
rain, it always rains. But the yesterday weatherman frequently
predicts a 100% chance of rain and is wrong.

» The yesterday weatherman violates prediction conditioned
average consistency.

» Bucket the weatherman’s predictions into 100 buckets. Say p;
is in bucket i (p; € B(i)) if it is closer to i/100 than any
other point j/100.
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Devising a Test

Definition

Given a sequence of predictions and outcomes (p1, y1,...,PT,YT),
let nr(i) = |{t : pr € B(i)}| be the number of rounds on which
the prediction was in bucket /. The sequence satisfies e-prediction
conditioned average consistency for a bucket i if:

€

Zt:pteB(i) Yt — pt
nr (i)

» i.e. conditioned p; ~ i/100 probability of rain, it should rain
roughly a //100 fraction of the time.

» Idea for calibration: Forecaster should be correct on average,
conditioned on her forecast.
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Calibration

» Idea: Ask for conditional consistency for all 100 buckets.

» Problem: Even the oracular weatherman wouldn't satisfy this
for buckets that were infrequently used.

» But can ask for it on average:
Definition
A prediction strategy satisfies e-average calibration if for all
sequences of outcomes, the sequence of predictions it generates

(p1,y1,-..,pPT,yT) satisfies:

B % nr(i) ‘Zt:ngB(i).yt —pe| _
p T nt(i) ]
g % ET: 1[pe € B()](ye — po) | <.
T i=1 |t=1 i a

We say it satisfies average calibration if ¢ - 0 as T — oo
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Calibration

» More convenient to instead work with a “Euclidean” metric of
calibration error:

100 T 2
L = Z (Z L[p: € B(i)](y: — pt)>

i=1 t=1

» Can confirm (“Cauchy-Schwartz inequality”) that the
calibration error is upper bounded by:

100

2

i=1

T

S 1l € B — o)

t=1

1
—=E
T

<E[1T°¢ﬂ < 2Vl

» Qur goal: Develop an algorithm to allow a fraudulent
weatherman to pass this test no matter what.
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» Suppose our weatherman has made predictions up through
day s — 1, and is considering what to predict on day s.

> Let Vi, = Y5 a[pe € B()](ye — o)

» If he predicts ps € B(i) and the outcome is ys, then the
increase in the loss function is:

AS(PS,YS) = Ls—Lsa
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Deriving The Fraudulent Weatherman's Algorithm

» Suppose our weatherman has made predictions up through
day s — 1, and is considering what to predict on day s.

> Let Vi, = Y5 a[pe € B()](ye — o)

» If he predicts ps € B(i) and the outcome is ys, then the
increase in the loss function is:

As(p57y5) = Ls—Ls

. 2
— (Z 1[p: € B(i)](y: — Pt))

t=1

s—1 2
_ (Z 1[p: € B(1)](y: — Pt))
t=1

= (Vsi_l + (ys - ps))2 - (V;_l)z
< 2V5i_1 : (YS - Ps) +1
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Deriving The Fraudulent Weatherman's Algorithm

As(p57}/s) < 2V5i_1 : (YS - Ps) +1

» Suppose our predictions guaranteed: E[Ag(ps, ys)] < % +1

» Then we would have:

.
Bltr] = 3 Bladpeydl < 20+ 7= 0 (L4 7)

t=1

» And our calibration loss would be bounded by:
10 1 1

e< =vE[L7]=0(—+ —

> [ T] (\/E ﬁ

- )
» O(1/V/T) if we choose m = T. This is our goal.
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» At round s, define a zero-sum game to guide the Learner's
strategy.

» The Learner (the minimization player) has action set
Ar={1/m,2/m,... 1}.

» The Adversary (the maximization player) has action set
A ={0,1}.

» The cost function is:
CS(P,)/) = 2Vsi—l : ()/s - Ps) +1

» Recall: Ag(ps,ys) < Cs(ps, ys)
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CS(P,}/) = 2Vsi—l ' (ys - Ps) +1

» What is the min max = max min value of this game?

» Prediction is easier if you know the answer already, so lets
consider the maxmin value: corresponds to Adversary
committing to the probability of rain gs and telling Learner.

> EynqlCs(p,y)] =2V 1 - (g5 — ps) + 1

» Learner can best respond choosing ps = arg minpca, |gs — p|:
lgs — ps| < 1/m.

» So:

2max; Vi, 2T

in E,q[Cs(p, y)] < 1< +1
qrgﬁﬁg,?;'ﬂ Y q[ s(P y)]_ m tis m +
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» So by the minimax theorem:

min maxE, 5[Cs(p, y)] <

PEAAL yEA2

s—

m

2 max; V!

1

+1<—+1
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» So by the minimax theorem:

2max; V! 2T
min max Ep_5[Cs(p, y)] < i Tl 4 1< 20 4

PEAA; yeAy m m
> Thus: At every round s, Learner has a strategy ps
guaranteeing for all weather outcomes ys:

2 Vi

EPsNﬁs[AS(PS7YS)] < m =

» And so we have proven:

Theorem
There exists a prediction strategy that against an arbitrary

adversarially chosen sequence of T outcomes satisfies e-average
calibration for e = O(1/V/'T)
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The Algorithm?

> We need to compute the min max strategy for the learner in
the zero sum game.

» We know how to do that with efficiently polynomial weights!

» But maybe there is a more efficient direct solution...
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The Algorithm?

AS(pS7yS) < 2V5i71 : (YS - Ps) +1

Needed: A strategy guaranteeing E[As(ps, ys)] < % + 1
» Case 1: V/_; >0 for all i: Predict ps = 1. Then:
As(ps,ys) <2Vig (s —1)+1<1
» Case 2: Vsi_l < 0 for all i Predict ps = 0. Then:
As(ps,ys) <2Vig (e —0)+1<1

» Otherwise: There must exist an i such that V/ ; > 0 and
Vs’fll < 0 or vice versa.
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The Algorithm?

As(ps,ys) <2V g+ (ys —ps) +1

Needed: A strategy guaranteeing E[As(ps, ys)] < % +1.

» Case 3: Let g € [0,1] be a probability such that
gVl +(1-q)V/ i =0.
> Let p =argmax{p € B(i)}, p = argmin{p’ € B(i + 1)}.
Note p’' = p+1/m.
» Play ps = p with probability g and ps = p’ w.p. (1 — q)
» Then:

E[As(p57 )/s)] < zqui—l'(YS_P)+2(1—q) Vsi'_i_%(ys—p—]_/m)_F]_

2vi+1
AWl 2Ty
m m
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Reflecting

» Argument was generic to any linear (i.e. based on bounding
sums or averages) test aimed at distinguishing the oracular
weatherman from a fraud.

» Because the minimax theorem literally is allowing us to
analyze the Learner as if she is the oracular weatherman!

» What does this mean about what we can learn from empirical
tests of probabilistic models?



Thanks!

See you next class — stay healthy!



