Incentivizing Truthful Forecasting with Proper Scoring Rules

Aaron Roth

University of Pennsylvania

April 17 2025

Overview

► We've spent a lot of time thinking about auctions: how to allocate goods and extract money.

Overview

- ► We've spent a lot of time thinking about auctions: how to allocate goods and extract money.
- ▶ But what about information?

Overview

- We've spent a lot of time thinking about auctions: how to allocate goods and extract money.
- ▶ But what about information?
- This class: How to contract with an expert to incentivize them to report their belief to us about the likelihood of an event we will only observe once.

► Suppose we want to know the likelihood that candidate *A* wins the next presidential election between *A* and *B*.

- ► Suppose we want to know the likelihood that candidate *A* wins the next presidential election between *A* and *B*.
- But we don't follow politics and don't have informed beliefs.

- ► Suppose we want to know the likelihood that candidate *A* wins the next presidential election between *A* and *B*.
- But we don't follow politics and don't have informed beliefs.
- Our friend the professional gambler is also a politics wonk. He's got well informed beliefs, but he won't just tell you, he'll only gamble.

- ► Suppose we want to know the likelihood that candidate *A* wins the next presidential election between *A* and *B*.
- ▶ But we don't follow politics and don't have informed beliefs.
- Our friend the professional gambler is also a politics wonk. He's got well informed beliefs, but he won't just tell you, he'll only gamble.
- ► How can we set up a gamble so that if he wants to maximize his payoff he'll tell us his true beliefs?

Attempt 1: "Who do you think will win the election? I'll give you \$1 if you get it right."

- ► Attempt 1: "Who do you think will win the election? I'll give you \$1 if you get it right."
 - What will he say to maximize his profits?

- ► Attempt 1: "Who do you think will win the election? I'll give you \$1 if you get it right."
 - ▶ What will he say to maximize his profits?
 - ▶ If he thinks $Pr[A] \ge 1/2$ he'll guess A, otherwise he'll guess B.

- ► Attempt 1: "Who do you think will win the election? I'll give you \$1 if you get it right."
 - ▶ What will he say to maximize his profits?
 - ▶ If he thinks $Pr[A] \ge 1/2$ he'll guess A, otherwise he'll guess B.
 - But this doesn't tell you his specific belief about Pr[A] i.e. can't distinguish Pr[A] = 0.51 from Pr[A] = 0.99.

- Attempt 1: "Who do you think will win the election? I'll give you \$1 if you get it right."
 - What will he say to maximize his profits?
 - ▶ If he thinks $Pr[A] \ge 1/2$ he'll guess A, otherwise he'll guess B.
 - But this doesn't tell you his specific belief about Pr[A] i.e. can't distinguish Pr[A] = 0.51 from Pr[A] = 0.99.
- ▶ But we didn't ask the right question...

Attempt 2: "What do you think is the probability *p* that *A* will win the election? I'll pay you...

- Attempt 2: "What do you think is the probability *p* that *A* will win the election? I'll pay you...
- \triangleright p if A wins and 1 p if B wins."

- Attempt 2: "What do you think is the probability *p* that *A* will win the election? I'll pay you...
- \triangleright p if A wins and 1 p if B wins."
 - What will he say to maximize his profits?

- Attempt 2: "What do you think is the probability *p* that *A* will win the election? I'll pay you...
- \triangleright p if A wins and 1 p if B wins."
 - What will he say to maximize his profits?
 - ▶ If he believes that *A* will win with probability *q*, then if he reports *p* his expected profit is:

$$S(p,q) = q \cdot p + (1-q) \cdot (1-p)$$

- Attempt 2: "What do you think is the probability *p* that *A* will win the election? I'll pay you...
- \triangleright p if A wins and 1 p if B wins."
 - What will he say to maximize his profits?
 - ▶ If he believes that *A* will win with probability *q*, then if he reports *p* his expected profit is:

$$S(p,q) = q \cdot p + (1-q) \cdot (1-p)$$

If $q \ge 0.5$ this is maximized at p = 1. Otherwise it is maximized at p = 0...

- Attempt 2: "What do you think is the probability *p* that *A* will win the election? I'll pay you...
- \triangleright p if A wins and 1 p if B wins."
 - What will he say to maximize his profits?
 - ▶ If he believes that *A* will win with probability *q*, then if he reports *p* his expected profit is:

$$S(p,q) = q \cdot p + (1-q) \cdot (1-p)$$

- If $q \ge 0.5$ this is maximized at p = 1. Otherwise it is maximized at p = 0...
- So we didn't learn any more than in Attempt 1...

1. There is some future event Y that can take value in some finite set \mathcal{Y} : for example, $\mathcal{Y} = \{A, B\}$.

- 1. There is some future event Y that can take value in some finite set \mathcal{Y} : for example, $\mathcal{Y} = \{A, B\}$.
- 2. An Agent has a belief $q \in \Delta \mathcal{Y}$ about how the outcome is distributed.

- 1. There is some future event Y that can take value in some finite set \mathcal{Y} : for example, $\mathcal{Y} = \{A, B\}$.
- 2. An Agent has a belief $q \in \Delta \mathcal{Y}$ about how the outcome is distributed.
- 3. The Agent will report (a possibly different) distribution $p \in \Delta \mathcal{Y}$.

- 1. There is some future event Y that can take value in some finite set \mathcal{Y} : for example, $\mathcal{Y} = \{A, B\}$.
- 2. An Agent has a belief $q \in \Delta \mathcal{Y}$ about how the outcome is distributed.
- 3. The Agent will report (a possibly different) distribution $p \in \Delta \mathcal{Y}$.
- 4. Once the outcome $\mathcal{Y} = y$ is realized, the Agent is paid S(p,y), according to a known function (or *scoring rule*) $S: \Delta \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$.

- 1. There is some future event Y that can take value in some finite set \mathcal{Y} : for example, $\mathcal{Y} = \{A, B\}$.
- 2. An Agent has a belief $q \in \Delta \mathcal{Y}$ about how the outcome is distributed.
- 3. The Agent will report (a possibly different) distribution $p \in \Delta \mathcal{Y}$.
- 4. Once the outcome $\mathcal{Y} = y$ is realized, the Agent is paid S(p, y), according to a known function (or *scoring rule*) $S : \Delta \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$.
- 5. The Agent will report the distribution *p* that maximizes their expected payment under their beliefs:

$$p \in \arg\max_{p \in \Delta \mathcal{Y}} \mathrm{E}_{y \sim q}[S(p, y)]$$

1. For shorthand, we'll write:

$$S(p;q) = \mathbb{E}_{y \sim q}[S(p,y)] = \sum_{y \in \mathcal{Y}} q(y)S(p,y)$$

for the Agent's expected payoff of reporting p under belief q.

1. For shorthand, we'll write:

$$S(p;q) = \mathbb{E}_{y \sim q}[S(p,y)] = \sum_{y \in \mathcal{Y}} q(y)S(p,y)$$

for the Agent's expected payoff of reporting p under belief q.

Definition (Proper Scoring Rule)

A scoring rule $S: \Delta \mathcal{Y} \times \mathcal{Y}$ is proper if for every belief q, truthful reporting is a dominant strategy: for every $q, p \in \Delta \mathcal{Y}$:

$$S(q;q) \geq S(p;q)$$

If the inequality is strict for every $p \neq q$, we say that S is a *strictly proper* scoring rule.

Definition (Convex Set)

A set $C \subseteq \mathbb{R}^d$ is *convex* if it contains the line segment connecting any two points $x, y \in C$. In other words, if for any $x, y \in C$ and any $\alpha \in [0,1]$:

$$\alpha x + (1 - \alpha)y \in C$$

Definition (Convex Set)

A set $C \subseteq \mathbb{R}^d$ is *convex* if it contains the line segment connecting any two points $x, y \in C$. In other words, if for any $x, y \in C$ and any $\alpha \in [0,1]$:

$$\alpha x + (1 - \alpha)y \in C$$

Definition

A function $f: \mathbb{R}^d \to \mathbb{R}$ is convex if $C = \{x : x \ge f(x)\}$ is a convex set. Equivalently, for all $x, y \in \mathbb{R}^d$, and for all $\alpha \in [0, 1]$:

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y)$$

An equivalent characterization: a function is convex if and only if every line tangent to the function lies below the function.

An equivalent characterization: a function is convex if and only if every line tangent to the function lies below the function.

Fact

A differentiable function $f : \mathbb{R}^d \to \mathbb{R}$ is convex if and only if for every $x, y \in \mathbb{R}^d$:

$$f(x) \ge f(y) + \nabla f(y) \cdot (x - y)$$

(See pictures)

1. Lets consider the binary prediction case: $\mathcal{Y} = \{A, B\}$. We can think of beliefs $p \in \mathbb{R}$, where $p = \Pr[A]$.

- 1. Lets consider the binary prediction case: $\mathcal{Y} = \{A, B\}$. We can think of beliefs $p \in \mathbb{R}$, where $p = \Pr[A]$.
- 2. So $S(p; q) = q \cdot S(p, A) + (1 q)S(p, B)$.

- 1. Lets consider the binary prediction case: $\mathcal{Y} = \{A, B\}$. We can think of beliefs $p \in \mathbb{R}$, where $p = \Pr[A]$.
- 2. So $S(p; q) = q \cdot S(p, A) + (1 q)S(p, B)$.
- 3. Let f(q) = S(q; q).

- 1. Lets consider the binary prediction case: $\mathcal{Y} = \{A, B\}$. We can think of beliefs $p \in \mathbb{R}$, where $p = \Pr[A]$.
- 2. So $S(p; q) = q \cdot S(p, A) + (1 q)S(p, B)$.
- 3. Let f(q) = S(q; q).
 - 3.1 Observation 1: S(p;q) is *linear* in q for all p.

- 1. Lets consider the binary prediction case: $\mathcal{Y} = \{A, B\}$. We can think of beliefs $p \in \mathbb{R}$, where $p = \Pr[A]$.
- 2. So $S(p; q) = q \cdot S(p, A) + (1 q)S(p, B)$.
- 3. Let f(q) = S(q; q).
 - 3.1 Observation 1: S(p;q) is *linear* in q for all p.
 - 3.2 If S is proper, then for all $q \neq p$, $f(q) \geq S(p; q)$.

- 1. Lets consider the binary prediction case: $\mathcal{Y} = \{A, B\}$. We can think of beliefs $p \in \mathbb{R}$, where $p = \Pr[A]$.
- 2. So $S(p; q) = q \cdot S(p, A) + (1 q)S(p, B)$.
- 3. Let f(q) = S(q; q).
 - 3.1 Observation 1: S(p;q) is *linear* in q for all p.
 - 3.2 If S is proper, then for all $q \neq p$, $f(q) \geq S(p; q)$.
 - 3.3 So $f(q) = \max_{p \in [0,1]} S(p; q)$, the maximum of a bunch of linear functions (convex).

Proper Scoring Rules: Building Intuition

- 1. Lets consider the binary prediction case: $\mathcal{Y} = \{A, B\}$. We can think of beliefs $p \in \mathbb{R}$, where $p = \Pr[A]$.
- 2. So $S(p; q) = q \cdot S(p, A) + (1 q)S(p, B)$.
- 3. Let f(q) = S(q; q).
 - 3.1 Observation 1: S(p;q) is *linear* in q for all p.
 - 3.2 If S is proper, then for all $q \neq p$, $f(q) \geq S(p; q)$.
 - 3.3 So $f(q) = \max_{p \in [0,1]} S(p; q)$, the maximum of a bunch of linear functions (convex).
 - 3.4 And for all $p \in [0,1]$, S(p;q) is the tangent line (gradient) of f(q) at p=q, and lies entirely below f(q).

Proper Scoring Rules: Building Intuition

- 1. Lets consider the binary prediction case: $\mathcal{Y} = \{A, B\}$. We can think of beliefs $p \in \mathbb{R}$, where $p = \Pr[A]$.
- 2. So $S(p; q) = q \cdot S(p, A) + (1 q)S(p, B)$.
- 3. Let f(q) = S(q; q).
 - 3.1 Observation 1: S(p;q) is *linear* in q for all p.
 - 3.2 If S is proper, then for all $q \neq p$, $f(q) \geq S(p; q)$.
 - 3.3 So $f(q) = \max_{p \in [0,1]} S(p; q)$, the maximum of a bunch of linear functions (convex).
 - 3.4 And for all $p \in [0,1]$, S(p;q) is the tangent line (gradient) of f(q) at p=q, and lies entirely below f(q).
- 4. (See pictures).

Proper Scoring Rules: A Characterization

Theorem

Fix a finite domain \mathcal{Y} with $|\mathcal{Y}| = d$. A scoring rule $S: \Delta \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$ is proper if and only if there exists a convex function $f: \mathbb{R}^d \to \mathbb{R}$ such that:

$$S(p;q) = f(p) + \nabla f(p)(q-p)$$

(In particular $S(p, y) = f(p) + \nabla f(p)(e_y - p)$ where e_y is the unit vector that has a 1 in the y'th component). The function f also satisfies

$$f(q) = S(q;q)$$

We have two directions to prove. First, if $f: \mathbb{R}^d \to [0,1]$ is convex, then $S(p,y) = f(p) + \nabla f(p)(e_y - p)$ is proper.

We have two directions to prove. First, if $f : \mathbb{R}^d \to [0,1]$ is convex, then $S(p,y) = f(p) + \nabla f(p)(e_y - p)$ is proper.

1. We can compute for any p, q:

$$S(p;q) = \mathbb{E}_{y \sim q}[f(p) + \nabla f(p)(e_y - p)] = f(p) + \nabla f(p)(q - p)$$

We have two directions to prove. First, if $f: \mathbb{R}^d \to [0,1]$ is convex, then $S(p,y) = f(p) + \nabla f(p)(e_y - p)$ is proper.

1. We can compute for any p, q:

$$S(p;q) = \mathbb{E}_{y \sim q}[f(p) + \nabla f(p)(e_y - p)] = f(p) + \nabla f(p)(q - p)$$

2. If q = p then we have:

$$S(q;q)=f(q)$$

We have two directions to prove. First, if $f : \mathbb{R}^d \to [0,1]$ is convex, then $S(p,y) = f(p) + \nabla f(p)(e_y - p)$ is proper.

1. We can compute for any p, q:

$$S(p;q) = \mathbb{E}_{y \sim q}[f(p) + \nabla f(p)(e_y - p)] = f(p) + \nabla f(p)(q - p)$$

2. If q = p then we have:

$$S(q;q)=f(q)$$

3. So for $p \neq q$, we have $S(q; q) \geq S(p; q)$ exactly when:

$$f(q) \ge f(p) + \nabla f(q)(q-p)$$

We have two directions to prove. First, if $f: \mathbb{R}^d \to [0,1]$ is convex, then $S(p,y) = f(p) + \nabla f(p)(e_y - p)$ is proper.

1. We can compute for any p, q:

$$S(p;q) = \mathbb{E}_{y \sim q}[f(p) + \nabla f(p)(e_y - p)] = f(p) + \nabla f(p)(q - p)$$

2. If q = p then we have:

$$S(q;q)=f(q)$$

3. So for $p \neq q$, we have $S(q; q) \geq S(p; q)$ exactly when:

$$f(q) \geq f(p) + \nabla f(q)(q-p)$$

4. Since f is convex, this is always the case! (Tada!)

In the reverse direction, we need to show that if S is proper, then there is a convex function f such that

$$S(p,y) = f(p) + \nabla f(p)(e_y - p)$$

1. We'll let f(q) = S(q; q)

In the reverse direction, we need to show that if S is proper, then there is a convex function f such that

$$S(p,y) = f(p) + \nabla f(p)(e_y - p)$$

- 1. We'll let f(q) = S(q; q)
- 2. Recall that for any *p*:

$$S(p;q) = \sum_{y \in \mathcal{Y}} q(y)S(p,y)$$

which is linear in q, always lies below f(q), and is tangent to f at q = p.

In the reverse direction, we need to show that if S is proper, then there is a convex function f such that

$$S(p,y) = f(p) + \nabla f(p)(e_y - p)$$

- 1. We'll let f(q) = S(q; q)
- 2. Recall that for any p:

$$S(p;q) = \sum_{y \in \mathcal{Y}} q(y)S(p,y)$$

which is linear in q, always lies below f(q), and is tangent to f at q = p.

3. So for all p, q we can write:

$$S(p;q) = f(p) + \nabla f(p)(q-p)$$

In the reverse direction, we need to show that if S is proper, then there is a convex function f such that

$$S(p,y) = f(p) + \nabla f(p)(e_y - p)$$

- 1. We'll let f(q) = S(q; q)
- 2. Recall that for any p:

$$S(p;q) = \sum_{y \in \mathcal{Y}} q(y)S(p,y)$$

which is linear in q, always lies below f(q), and is tangent to f at q = p.

3. So for all p, q we can write:

$$S(p;q) = f(p) + \nabla f(p)(q-p)$$

4. (Since all of f's tangent lines lie below it, it is convex)

1. Let $S(p, y) = \log(p(y))$.

- 1. Let $S(p, y) = \log(p(y))$.
- 2. So $S(p;q) = \sum_{y \in \mathcal{Y}} q(y) \log(p(y))$ (Cross entropy)

- 1. Let $S(p, y) = \log(p(y))$.
- 2. So $S(p; q) = \sum_{y \in \mathcal{Y}} q(y) \log(p(y))$ (Cross entropy)
- 3. Lets check our characterization...

- 1. Let $S(p, y) = \log(p(y))$.
- 2. So $S(p;q) = \sum_{y \in \mathcal{Y}} q(y) \log(p(y))$ (Cross entropy)
- 3. Lets check our characterization...
 - 3.1 $f(q) = S(q; q) = \sum_{y \in \mathcal{Y}} q(y) \log(q(y))$: Negative Shannon Entropy (Convex)

- 1. Let $S(p, y) = \log(p(y))$.
- 2. So $S(p;q) = \sum_{y \in \mathcal{Y}} q(y) \log(p(y))$ (Cross entropy)
- 3. Lets check our characterization...
 - 3.1 $f(q) = S(q; q) = \sum_{y \in \mathcal{Y}} q(y) \log(q(y))$: Negative Shannon Entropy (Convex)
 - 3.2 We can recover S(p, y) from our expression:

$$S(p,y) = f(p) + \nabla f(p)(e_y - p)$$

$$= f(p) + \nabla f(p)e_y - \nabla f(p)p$$

$$= \sum_{y \in \mathcal{Y}} p(y) \log(p(y)) + (1 + \log p(y)) - 1 - \sum_{y \in \mathcal{Y}} p(y) \log(p(y))$$

$$= \log p(y)$$

1. So cross entropy (a common objective in machine learning) is a proper scoring rule.

- 1. So cross entropy (a common objective in machine learning) is a proper scoring rule.
- 2. So is squared loss...

- 1. So cross entropy (a common objective in machine learning) is a proper scoring rule.
- 2. So is squared loss...
- 3. Not a coincidence! If you are solving a regression problem to try and learn the probability of a label conditional on some features, the unconstrained optimum will be the true distribution exactly when the loss is proper!

- 1. So cross entropy (a common objective in machine learning) is a proper scoring rule.
- 2. So is squared loss...
- 3. Not a coincidence! If you are solving a regression problem to try and learn the probability of a label conditional on some features, the unconstrained optimum will be the true distribution exactly when the loss is proper!
- 4. An important reason why regression models minimize *squared error* rather than e.g. *absolute error*.

Thanks!

See you next class — stay healthy!