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Overview

▶ Suppose we want to maximize revenue in a digital goods
setting but with pricings rather than auctions?

▶ Remember it can be hard to run auctions... We need all
bidders there at the same time!

▶ Bidders arriving online don’t necessarily have their valuations
drawn from a distribution. (Can be chosen by an adaptive
adversary)

▶ We’ll solve this by bringing the class full circle — using the
polynomial weights algorithm!
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Review

▶ Recall our solution from last lecture: The Random Sampling
Auction.

▶ Randomly partition bidders into to buckets, compute the
optimal revenue in each bucket, and use that estimate in the
other bucket.

▶ i.e. solve a statistical estimation/learning problem to
maximize revenue.

▶ Can we do something similar without having all bidders there
up front? An online learning problem?
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This Lecture

▶ Goal: find a truthful online auction to approximate the
optimal revenue.

▶ Bidders sequentially report their valuations and then receive an
allocation before the next bidder arrives.

▶ Similar ideas would work to give a dynamic pricing scheme,
but an online auction is a little easier. We’ll see a pricing
scheme next lecture.

▶ Recall our revenue benchmark: OPT≥k(v) = maxj≥k(j · v(j)).
The random sampling auction achieved a 4 approximation to
OPT≥2(v)

▶ Well aim for a 1 + ϵ approximation for larger k .
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Our Setting

Definition
In an online digital goods auction, we have n bidders with
valuations vi ∈ [0, 1].

▶ At time t, bidder t arrives and reports valuation v ′t .

▶ An item is allocated according to rule xt(v
′
1, . . . , v

′
t), and

payment pt(v
′
1, . . . , v

′
t) is collected. Note that the allocation

and payment rule is allowed to depend on previous bidders,
but not future bidders.
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Auction Format

It will be helpful for us to think about a particularly simple kind of
allocation and payment rule:

Definition
In a take-it-or-leave-it (TIOLI) auction:

▶ At time t, a fixed price st = st(v
′
1, . . . , v

′
t−1) is computed.

▶ The item is sold according to the following allocation and
payment rules:

xt(v
′
1, . . . , vt−1, v

′
t) = 1 ⇔ v ′t ≥ st pt(v

′
1, . . . , v

′
t−1) = st

i.e. the item is sold at a fixed price st to bidders with valuation
above the price, and the price st is computed independently of
bidder t’s own bid.
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Auction Format

A simple observation:

Theorem
Any take-it-or-leave-it auction is dominant strategy truthful.

Proof.
Since the price that bidder t faces is computed independently of
his own bid, over/under-reporting does not influence the price – it
can only result in agent t winning the item at a price he was not
willing to pay, or failing to win the item even when he would have
been willing to pay the price.

Its not hard to see that it is without loss of generality to consider
TIOLI auctions... In single parameter domains, truthful auctions
must be monotone. For deterministic auctions, this means that the
allocation rule for each bidder must be determined by a fixed,
bid-independent threshold (i.e. the fixed price)).
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Remembering Polynomial Weights

▶ Our goal: learn the best fixed price.

▶ The idea: Use the polynomial weights algorithm, using prices
as experts.

▶ Recall the setting and guarantees of the polynomial weights
algorithm:

▶ Given a collection of N experts, each of whom experience
gains g t

i ∈ [0, 1] each day t.
▶ The polynomial weights algorithm selects an expert each day

and experiences its gain.
▶ Guarantees that after T rounds: with update parameter ϵ is

able to select experts so as to achieve expected gain after T
rounds:

GT
PW ≥ max

k∈[N]
GT
k − 2

√
T ln(N)
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Using Polynomial Weights

▶ Lets fix some collection of N prices N ⊆ [0, 1] and treat them
as “experts”.

▶ What should their gains be?

▶ If we use price s on bidder t, we obtain revenue:

r ts =

{
s, if vt ≥ s;
0, if vt < s.

▶ So these are our gains. g t
s = r ts .
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Using Polynomial Weights

▶ Let RevTp denote the revenue of using fixed price p for the
first T bidders:

RevTp = p · |{i ≤ T : vi ≥ p}|

▶ By construction, this is the same as the cumulative gain of an
expert corresponding to p: GT

p = RevTp .

▶ If we use the PW to select a price from some set N at every
round, we get a Take-It-Or-Leave-It mechanism, which is
dominant strategy truthful. Moreover, we are guaranteed:

RevTPW ≥ max
p∈N

RevTp − 2
√
T ln(N)

▶ So how should we choose our set of prices N?

▶ There is a tradeoff – choosing a larger set makes
maxp∈N RevTp closer to OPT(v), but also makes ln(N)
larger...
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Choosing the Experts

▶ Consider choosing prices that are multiples of some α > 0:

N = {α, 2α, 3α, . . . , 1}

.

▶ We have that |N| = 1
α .

▶ We also know that:

max
p∈N

RevTp ≥ max
p∈[0,1]

RevTp − α · n

Because for every p ∈ [0, 1] there is a p′ ∈ N such that
p − α ≤ p′ ≤ p.
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Choosing the Experts

▶ Combining these guarantees we get:

RevnPW ≥ max
p∈[0,1]

Revnp − 2

√
n ln(

1

α
)− αn

▶ Choosing α to be 1/n we get:

RevnPW ≥ max
p∈[0,1]

Revnp − 3
√

n ln(n)
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Interpreting the Guarantee

RevnPW ≥ OPT− 3
√
n ln(n)

▶ Strictly speaking, this guarantee is incomparable to the
4-approximation we derived last time (because it is additive).

▶ But we would naturally expect that optimal revenue should
grow with n.

▶ This gives us (asymptotically) a 1-approximation to OPT
whenever OPT grows as OPT(n) ∈ ω(

√
n log n).

▶ e.g. it suffices if with constant probability bidders have
valuations vi ≥ log n/

√
n.

▶ True for any fixed nontrivial distribution as n → ∞.
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Thanks!

See you next class — stay healthy!


