Prior Free Profit Maximization: Random Sampling Auctions

Aaron Roth

University of Pennsylvania

April 3 2025

We studied Myerson's optimal auctions for revenue maximization.

- We studied Myerson's optimal auctions for revenue maximization.
- ► And revenue-competitive pricings...

- We studied Myerson's optimal auctions for revenue maximization.
- And revenue-competitive pricings...
- ▶ But to use them, we needed to know the distribution *D* from which valuations are drawn.

- We studied Myerson's optimal auctions for revenue maximization.
- And revenue-competitive pricings...
- ▶ But to use them, we needed to know the distribution *D* from which valuations are drawn.
- ► To run the VCG mechanism, we didn't need to know anything at all.

- We studied Myerson's optimal auctions for revenue maximization.
- ► And revenue-competitive pricings...
- ▶ But to use them, we needed to know the distribution *D* from which valuations are drawn.
- ➤ To run the VCG mechanism, we didn't need to know anything at all.
- Can we think about revenue in a distribution independent way?

- We studied Myerson's optimal auctions for revenue maximization.
- And revenue-competitive pricings...
- ▶ But to use them, we needed to know the distribution *D* from which valuations are drawn.
- ➤ To run the VCG mechanism, we didn't need to know anything at all.
- Can we think about revenue in a distribution independent way?
- ► This lecture: A case study "digital goods auctions"

Digital goods auctions (unlimited supply auctions) models the sale of goods with zero marginal cost of production (e.g. software).

- Digital goods auctions (unlimited supply auctions) models the sale of goods with zero marginal cost of production (e.g. software).
- Hence, there is no constraint on how many individuals can "win" the auction.

- Digital goods auctions (unlimited supply auctions) models the sale of goods with zero marginal cost of production (e.g. software).
- Hence, there is no constraint on how many individuals can "win" the auction.

Definition

A digital goods auction is a single parameter domain with a set of alternatives $A = \{S \subseteq [n]\}$ – i.e. any set of bidders is a feasible outcome. For $a \in A$ we write $a_i = \left\{ \begin{array}{ll} 1, & \text{if } i \in S; \\ 0, & \text{otherwise.} \end{array} \right.$ Each bidder's valuation function is parameterized by $v_i \in \mathbb{R}_{\geq 0}$, and $v_i(a) := v_i \cdot a_i$.

▶ Observe: Welfare and profit maximization are in conflict here.

- ▶ Observe: Welfare and profit maximization are in conflict here.
- ► The VCG mechanism would allocate to everybody and charge nothing.

- ▶ Observe: Welfare and profit maximization are in conflict here.
- The VCG mechanism would allocate to everybody and charge nothing.
- ► To maximize revenue, we'll need to artificially limit supply.

- ▶ Observe: Welfare and profit maximization are in conflict here.
- The VCG mechanism would allocate to everybody and charge nothing.
- ► To maximize revenue, we'll need to artificially limit supply.
- But first, what should our benchmark be?

▶ When we had a prior distribution *D*, we could define the *optimal* revenue.

- ▶ When we had a prior distribution *D*, we could define the *optimal* revenue.
- ▶ But what is a reasonable benchmark?

- ▶ When we had a prior distribution *D*, we could define the *optimal* revenue.
- ▶ But what is a reasonable benchmark?
- If we knew D, the revenue optimal auction would correspond to a fixed price $p = \phi^{-1}(0)$.

- ▶ When we had a prior distribution *D*, we could define the *optimal* revenue.
- ▶ But what is a reasonable benchmark?
- If we knew D, the revenue optimal auction would correspond to a fixed price $p = \phi^{-1}(0)$.
- ➤ So if we could compete with the revenue of the best fixed price we'd be competing with the (unknown) Bayesian optimal benchmark.

At price p, everyone with value $v_i \ge p$ buys. We obtain revenue $p \cdot |\{i : v_i \ge p\}|$.

- At price p, everyone with value $v_i \ge p$ buys. We obtain revenue $p \cdot |\{i : v_i \ge p\}|$.
- The best fixed price in hindsight is always p ∈ {v₁,..., v_n}. (why?)

- At price p, everyone with value $v_i \ge p$ buys. We obtain revenue $p \cdot |\{i : v_i \ge p\}|$.
- ► The best fixed price in hindsight is always $p \in \{v_1, \dots, v_n\}$. (why?)
- The revenue of the best fixed price is therefore:

$$\mathrm{OPT}(v) = \max_{i} v_i \cdot |\{j : v_j \ge v_i\}| = \max_{i} (i \cdot v_{(i)})$$

where $v_{(i)}$ is the *i*'th highest valuation in sorted order.

- At price p, everyone with value $v_i \ge p$ buys. We obtain revenue $p \cdot |\{i : v_i \ge p\}|$.
- ► The best fixed price in hindsight is always $p \in \{v_1, \dots, v_n\}$. (why?)
- The revenue of the best fixed price is therefore:

$$\mathrm{OPT}(v) = \max_{i} v_i \cdot |\{j : v_j \ge v_i\}| = \max_{i} (i \cdot v_{(i)})$$

where $v_{(i)}$ is the i'th highest valuation in sorted order.

▶ ... But this isn't attainable by any truthful mechanism when i = 1. Consider the case of n = 1.

► A slightly weaker benchmark: the revenue of the best fixed price that sells to at least 2 people.

$$\mathrm{OPT}^{\geq 2}(v) = \max_{i \geq 2} \left(i \cdot v_{(i)} \right)$$

A slightly weaker benchmark: the revenue of the best fixed price that sells to at least 2 people.

$$\mathrm{OPT}^{\geq 2}(v) = \max_{i \geq 2} \left(i \cdot v_{(i)} \right)$$

We shouldn't think of this as a serious restriction in a large market...

A slightly weaker benchmark: the revenue of the best fixed price that sells to at least 2 people.

$$\mathrm{OPT}^{\geq 2}(v) = \max_{i \geq 2} \left(i \cdot v_{(i)} \right)$$

- We shouldn't think of this as a serious restriction in a large market...
- ► How should we obtain it?

A slightly weaker benchmark: the revenue of the best fixed price that sells to at least 2 people.

$$\mathrm{OPT}^{\geq 2}(v) = \max_{i \geq 2} \left(i \cdot v_{(i)} \right)$$

- We shouldn't think of this as a serious restriction in a large market...
- ► How should we obtain it?
- Attempt 1: Just compute the best fixed price v_j from the bids and use that. (Not truthful).

Attempt 2: Offer each i price p_i corresponding to $\mathrm{OPT}^{\geq 2}(v_{-i})$ – i.e. the best fixed price excluding agent i.

- Attempt 2: Offer each i price p_i corresponding to $OPT^{\geq 2}(v_{-i})$ i.e. the best fixed price excluding agent i.
- ► This yields a truthful mechanism. How does it do with respect to the benchmark?

- Attempt 2: Offer each i price p_i corresponding to $OPT^{\geq 2}(v_{-i})$ i.e. the best fixed price excluding agent i.
- ► This yields a truthful mechanism. How does it do with respect to the benchmark?

Example

Suppose we have 90 "low value" agents with $v_i=1$, and 10 "high value" agents with $v_i=10$. $\mathrm{OPT}^{\geq 2}(v)=100$, achieved by charging either p=10 or p=1. But for $v_i=1$, $\mathrm{OPT}^{\geq 2}(v_{-i}) \leftrightarrow p_i=10$, and for $v_i=10$, $\mathrm{OPT}^{\geq 2}(v_{-i}) \leftrightarrow p_i=1$. So this auction gets profit only 10... (And the ratio to $\mathit{OPT}^{\geq 2}(v)$ can be made arbitrarily bad.)

Lets start with an intermediate goal.

- Lets start with an intermediate goal.
- ▶ Given a target profit R, want a mechanism that will obtain profit R if $OPT^{\geq 2}(v) \geq R$.

- Lets start with an intermediate goal.
- ▶ Given a target profit R, want a mechanism that will obtain profit R if $OPT^{\geq 2}(v) \geq R$.
- Otherwise we won't require any revenue guarantee for the mechanism.

- Lets start with an intermediate goal.
- ▶ Given a target profit R, want a mechanism that will obtain profit R if $OPT^{\geq 2}(v) \geq R$.
- Otherwise we won't require any revenue guarantee for the mechanism.

Definition

The digital goods profit extractor with target profit R (Extract(R, v)) does the following: it finds the largest value k such that $v_{(k)} \ge R/k$, and then sells to the top k bidders at price R/k. If there is no such k, it sells to nobody.

- Lets start with an intermediate goal.
- ▶ Given a target profit R, want a mechanism that will obtain profit R if $OPT^{\geq 2}(v) \geq R$.
- Otherwise we won't require any revenue guarantee for the mechanism.

Definition

The digital goods profit extractor with target profit R (Extract(R, v)) does the following: it finds the largest value k such that $v_{(k)} \geq R/k$, and then sells to the top k bidders at price R/k. If there is no such k, it sells to nobody.

Lemma

Extract(R, v) is dominant strategy truthful.

Profit Extractors are Dominant Strategy IC

▶ View the profit extractor as running the following process:

Profit Extractors are Dominant Strategy IC

- ▶ View the profit extractor as running the following process:
 - 1. Start with k = n, and offer a price of p = R/k to the bidders.
 - 2. If any bidder *rejects* the offer (i.e. $v_{(k)} < R_i$), remove her from the auction, set $k \leftarrow k-1$ and repeat the offer of p=R/k (now a higher offer, to 1 fewer bidders).
 - 3. If all *k* bidders *accept* the offer, then they (the top *k*) bidders receive the good and pay the last offer price.

- ▶ View the profit extractor as running the following process:
 - 1. Start with k = n, and offer a price of p = R/k to the bidders.
 - 2. If any bidder *rejects* the offer (i.e. $v_{(k)} < R_i$), remove her from the auction, set $k \leftarrow k-1$ and repeat the offer of p=R/k (now a higher offer, to 1 fewer bidders).
 - 3. If all *k* bidders *accept* the offer, then they (the top *k*) bidders receive the good and pay the last offer price.
- Note that if any bidder rejects the offer, she can never win in any future round.

- ▶ View the profit extractor as running the following process:
 - 1. Start with k = n, and offer a price of p = R/k to the bidders.
 - 2. If any bidder *rejects* the offer (i.e. $v_{(k)} < R_i$), remove her from the auction, set $k \leftarrow k-1$ and repeat the offer of p=R/k (now a higher offer, to 1 fewer bidders).
 - 3. If all *k* bidders *accept* the offer, then they (the top *k*) bidders receive the good and pay the last offer price.
- Note that if any bidder rejects the offer, she can never win in any future round.
- ▶ So rejecting any offer of $p < v_i$ is a dominated strategy.

- ▶ View the profit extractor as running the following process:
 - 1. Start with k = n, and offer a price of p = R/k to the bidders.
 - 2. If any bidder *rejects* the offer (i.e. $v_{(k)} < R_i$), remove her from the auction, set $k \leftarrow k-1$ and repeat the offer of p=R/k (now a higher offer, to 1 fewer bidders).
 - 3. If all *k* bidders *accept* the offer, then they (the top *k*) bidders receive the good and pay the last offer price.
- Note that if any bidder rejects the offer, she can never win in any future round.
- ▶ So rejecting any offer of $p < v_i$ is a dominated strategy.
- Similarly, accepting an offer of $p > v_i$ is a dominated strategy since prices only rise.

- ▶ View the profit extractor as running the following process:
 - 1. Start with k = n, and offer a price of p = R/k to the bidders.
 - 2. If any bidder *rejects* the offer (i.e. $v_{(k)} < R_i$), remove her from the auction, set $k \leftarrow k-1$ and repeat the offer of p=R/k (now a higher offer, to 1 fewer bidders).
 - 3. If all *k* bidders *accept* the offer, then they (the top *k*) bidders receive the good and pay the last offer price.
- Note that if any bidder rejects the offer, she can never win in any future round.
- ▶ So rejecting any offer of $p < v_i$ is a dominated strategy.
- ▶ Similarly, accepting an offer of $p > v_i$ is a dominated strategy since prices only rise.
- ► Hence the dominant strategy for every bidder *i* is to report their true value.

Lemma

Extract(R, v) obtains revenue R if $OPT^{\geq 2}(v) \geq R$, and otherwise obtains revenue 0.

Lemma

Extract(R, v) obtains revenue R if $OPT^{\geq 2}(v) \geq R$, and otherwise obtains revenue 0.

Proof.

▶ Recall: $OPT^{\geq 2}(v) = k \cdot v_{(k)}$ for some $k \in \{2, ..., n\}$.

Lemma

Extract(R, v) obtains revenue R if $\mathrm{OPT}^{\geq 2}(v) \geq R$, and otherwise obtains revenue 0.

- ▶ Recall: $OPT^{\geq 2}(v) = k \cdot v_{(k)}$ for some $k \in \{2, ..., n\}$.
- ▶ If $OPT^{\geq 2}(v) \geq R$ then $v_{(k)} \geq \frac{R}{k}$.

Lemma

Extract(R, v) obtains revenue R if $OPT^{\geq 2}(v) \geq R$, and otherwise obtains revenue 0.

- ▶ Recall: $OPT^{\geq 2}(v) = k \cdot v_{(k)}$ for some $k \in \{2, ..., n\}$.
- ▶ If $OPT^{\geq 2}(v) \geq R$ then $v_{(k)} \geq \frac{R}{k}$.
- ▶ Hence, the profit extractor finds some $k' \ge k$ such that $v_{(k')} \ge R/k'$, and obtains profit $k' \cdot R/k' = R$.

Lemma

Extract(R, v) obtains revenue R if $OPT^{\geq 2}(v) \geq R$, and otherwise obtains revenue 0.

- ► Recall: $OPT^{\geq 2}(v) = k \cdot v_{(k)}$ for some $k \in \{2, ..., n\}$.
- ▶ If $OPT^{\geq 2}(v) \geq R$ then $v_{(k)} \geq \frac{R}{k}$.
- ▶ Hence, the profit extractor finds some $k' \ge k$ such that $v_{(k')} \ge R/k'$, and obtains profit $k' \cdot R/k' = R$.
- ▶ If $R > \mathrm{OPT}^{(2)}(v) = \max_k k \cdot v_{(k)}$, then there is no k such that $v_{(k)} \geq R/k$. So the mechanism halts without selling to anybody.

▶ We now have a useful tool.

- We now have a useful tool.
- ▶ We can obtain revenue *R* if we know that it is possible to obtain revenue *R* with a fixed price.

- ► We now have a useful tool.
- ▶ We can obtain revenue *R* if we know that it is possible to obtain revenue *R* with a fixed price.
- But we're not done, since we don't know R.

- We now have a useful tool.
- ▶ We can obtain revenue *R* if we know that it is possible to obtain revenue *R* with a fixed price.
- ▶ But we're not done, since we don't know *R*.
- We've reduced our problem to finding a good *estimate* of the true optimal revenue R^* .

- We now have a useful tool.
- ▶ We can obtain revenue *R* if we know that it is possible to obtain revenue *R* with a fixed price.
- ▶ But we're not done, since we don't know *R*.
- We've reduced our problem to finding a good *estimate* of the true optimal revenue R^* .
- ► For truthfulness, it is important that *R* is defined independently of the bidders we run the profit extractor on.

Idea: Try and estimate R^* from a random sample of the bidders, and then run the profit extractor on the remaining bidders.

Idea: Try and estimate R^* from a random sample of the bidders, and then run the profit extractor on the remaining bidders.

RS(v):

Randomly partition the agents by assigning each agent uniformly at random to one of two sets: S' or S''. **Calculate** $R' = \mathrm{OPT}^{\geq 2}(v_{S'})$ and $R'' = \mathrm{OPT}^{\geq 2}(v_{S''})$. **Run** Extract(R', $v_{S''}$) on S'' and Extract(R'', $v_{S'}$) on S'.

Theorem

The random sampling auction is dominant strategy truthful.

Theorem

The random sampling auction is dominant strategy truthful.

Proof.

 $\mathsf{Extract}(R, v)$ is truthful whenever it is run with a value R computed independently of the bidders it is run on.

Lemma

The revenue of the random sampling auction is at least min(R', R'').

Lemma

The revenue of the random sampling auction is at least min(R', R'').

Proof.

Either $R' \ge R''$ or $R'' \ge R'$ (or possibly both). So at least one copy of Extract succeeds.

Lemma

The revenue of the random sampling auction is at least min(R', R'').

Proof.

Either $R' \ge R''$ or $R'' \ge R'$ (or possibly both). So at least one copy of Extract succeeds.

So it remains to understand min(R', R'') as a function of $R := OPT^{\geq 2}(v)$.

Theorem

If we flip $k \geq 2$ coins, then $\mathbb{E}[\min(\#heads, \#tails)] \geq k/4$.

Theorem

If we flip $k \ge 2$ coins, then $\mathbb{E}[\min(\#heads, \#tails)] \ge k/4$.

Proof.

▶ Let M_i be $\mathbb{E}[\min(\#\text{heads}, \#\text{tails})]$ after i coin flips.

Theorem

If we flip $k \ge 2$ coins, then $\mathbb{E}[\min(\#heads, \#tails)] \ge k/4$.

- Let M_i be $\mathbb{E}[\min(\#\text{heads}, \#\text{tails})]$ after i coin flips.
- Some direct calculations show: $M_1 = 0$ and $M_2 = 1/2$.

Theorem

If we flip $k \ge 2$ coins, then $\mathbb{E}[\min(\#heads, \#tails)] \ge k/4$.

- Let M_i be $\mathbb{E}[\min(\#\text{heads}, \#\text{tails})]$ after i coin flips.
- Some direct calculations show: $M_1 = 0$ and $M_2 = 1/2$.
- Now define $X_i := M_i M_{i-1}$, the expected change to min(#heads, #tails) after we flip the i'th coin.

Theorem

If we flip $k \ge 2$ coins, then $\mathbb{E}[\min(\#heads, \#tails)] \ge k/4$.

Proof.

- ▶ Let M_i be $\mathbb{E}[\min(\#\text{heads}, \#\text{tails})]$ after i coin flips.
- Some direct calculations show: $M_1 = 0$ and $M_2 = 1/2$.
- Now define $X_i := M_i M_{i-1}$, the expected change to min(#heads, #tails) after we flip the i'th coin.
- By linearity of expectation:

$$M_k = \sum_{i=1}^k X_i$$

so we are done if we can compute X_i for all i.

There are two cases:

► Case 1: i is even. i - 1 is odd, and so we have $\# \text{heads} \neq \# \text{tails after } i - 1$ coin flips.

There are two cases:

- ► Case 1: *i* is even. i 1 is odd, and so we have $\# \text{heads} \neq \# \text{tails after } i 1$ coin flips.
- ▶ Hence $X_i = 1/2$, since with probability 1/2, the coin flip contributes to the smaller of the two quantities.

There are two cases:

- ► Case 1: *i* is even. i 1 is odd, and so we have $\# \text{heads} \neq \# \text{tails after } i 1$ coin flips.
- ▶ Hence $X_i = 1/2$, since with probability 1/2, the coin flip contributes to the smaller of the two quantities.
- ► Case 2: i is odd. $X_i \ge 0$.

There are two cases:

- ► Case 1: *i* is even. i 1 is odd, and so we have $\# \text{heads} \neq \# \text{tails after } i 1$ coin flips.
- ▶ Hence $X_i = 1/2$, since with probability 1/2, the coin flip contributes to the smaller of the two quantities.
- ▶ Case 2: i is odd. $X_i \ge 0$.

So:

$$M_k = \sum_{i=1}^k X_k \ge \frac{k}{2} \cdot \frac{1}{2} = \frac{k}{4}$$

There are two cases:

- ▶ Case 1: *i* is even. i 1 is odd, and so we have $\# \text{heads} \neq \# \text{tails}$ after i 1 coin flips.
- ▶ Hence $X_i = 1/2$, since with probability 1/2, the coin flip contributes to the smaller of the two quantities.
- ▶ Case 2: i is odd. $X_i \ge 0$.

So:

$$M_k = \sum_{i=1}^k X_k \ge \frac{k}{2} \cdot \frac{1}{2} = \frac{k}{4}$$

(Actually, we were a little sloppy... we only showed that $M_k \geq \lfloor \frac{k}{2} \rfloor \cdot \frac{1}{2}$, which might be a little less than k/4. To be fully rigorous, we have to directly verify that $X_3 = 1/4$ which makes up the difference).

Theorem

Let Rev be the expected revenue of the random sampling auction.

Then:

$$Rev \geq \frac{\mathrm{OPT}^{\geq 2}(v)}{4}.$$

$$\textit{Rev} \geq \mathbb{E}[\min(\textit{R}',\textit{R}'')]$$

► Recall:

$$Rev \geq \mathbb{E}[\min(R', R'')]$$

▶ We know that $OPT^{\geq 2}(v) = k \cdot p$ for some $k \geq 2$ and some price p.

$$Rev \geq \mathbb{E}[\min(R', R'')]$$

- We know that $OPT^{\geq 2}(v) = k \cdot p$ for some $k \geq 2$ and some price p.
- ▶ Of the k winners when using price p, let k' be the number in S' and k'' be the number in S''. Observe that $R' \geq k'' \cdot p$ and $R'' \geq k'' \cdot p$

$$Rev \geq \mathbb{E}[\min(R', R'')]$$

- We know that $OPT^{\geq 2}(v) = k \cdot p$ for some $k \geq 2$ and some price p.
- ▶ Of the k winners when using price p, let k' be the number in S' and k'' be the number in S''. Observe that $R' \geq k'' \cdot p$ and $R'' \geq k'' \cdot p$
- ► Hence:

$$\frac{Rev}{\mathrm{OPT}^{\geq 2}(v)} \geq \frac{\mathbb{E}[\min(R', R'')]}{k \cdot p}$$

$$Rev \geq \mathbb{E}[\min(R', R'')]$$

- We know that $OPT^{\geq 2}(v) = k \cdot p$ for some $k \geq 2$ and some price p.
- ▶ Of the k winners when using price p, let k' be the number in S' and k'' be the number in S''. Observe that $R' \geq k'' \cdot p$ and $R'' \geq k'' \cdot p$
- ► Hence:

$$\frac{Rev}{\mathrm{OPT}^{\geq 2}(v)} \geq \frac{\mathbb{E}[\min(R', R'')]}{k \cdot p}$$
$$\geq \frac{\mathbb{E}[\min(k' \cdot p, k'' \cdot p)]}{k \cdot p}$$

$$Rev \geq \mathbb{E}[\min(R', R'')]$$

- ▶ We know that $OPT^{\geq 2}(v) = k \cdot p$ for some $k \geq 2$ and some price p.
- ▶ Of the k winners when using price p, let k' be the number in S' and k'' be the number in S''. Observe that $R' \geq k'' \cdot p$ and $R'' \geq k'' \cdot p$
- ► Hence:

$$\frac{Rev}{\mathrm{OPT}^{\geq 2}(v)} \geq \frac{\mathbb{E}[\min(R', R'')]}{k \cdot p} \\
\geq \frac{\mathbb{E}[\min(k' \cdot p, k'' \cdot p)]}{k \cdot p} \\
\geq \frac{\mathbb{E}[\min(k', k'')]}{k}$$

$$Rev \geq \mathbb{E}[\min(R', R'')]$$

- We know that $OPT^{\geq 2}(v) = k \cdot p$ for some $k \geq 2$ and some price p.
- ▶ Of the k winners when using price p, let k' be the number in S' and k'' be the number in S''. Observe that $R' \geq k'' \cdot p$ and $R'' \geq k'' \cdot p$
- ► Hence:

$$\frac{Rev}{\mathrm{OPT}^{\geq 2}(v)} \geq \frac{\mathbb{E}[\min(R', R'')]}{k \cdot p}$$

$$\geq \frac{\mathbb{E}[\min(k' \cdot p, k'' \cdot p)]}{k \cdot p}$$

$$\geq \frac{\mathbb{E}[\min(k', k'')]}{k}$$

$$\geq \frac{1}{4}$$

► So we can approximate the revenue of the optimal auction without knowing *D*.

- ► So we can approximate the revenue of the optimal auction without knowing *D*.
- ► We got a 4 approximation, but...

- So we can approximate the revenue of the optimal auction without knowing D.
- ▶ We got a 4 approximation, but...
- ► This was only because we needed to handle the case in which the optimal auction sold to only 2 people.

- So we can approximate the revenue of the optimal auction without knowing D.
- We got a 4 approximation, but...
- ► This was only because we needed to handle the case in which the optimal auction sold to only 2 people.
- ▶ Similar ideas lead to a $(1 + \epsilon)$ approximation of $OPT^{\geq k}(v)$ as k becomes large.

Thanks!

See you next class — stay healthy!