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3. Closest Guess: 15.0000069693489

4. Winner: Forest James Ho-Chen
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Guess 2/3 the average stats

1. Guesses above 66.66: 7

2. Guesses above 44.44: 8

3. Guesses above 29.33: 10
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5. Guesses above 13.17: 18

6. Guesses above 8.78: 21

7. ... Guesses of 0: 4
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Overview

▶ Today we’ll give (review) the basic definitions that will
underly our study this semester.

▶ Games, Best Responses, Dominant Strategies, Iterated
Elimination...

▶ Solution concepts: Nash equilibrium
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A Game

Definition
A game is an interaction defined by:

▶ A set of players P

▶ A finite set of actions Ai for each player i ∈ P. We write
A = ×n

i=1Ai to denote the action space for all players, and
A−i = ×j ̸=iAj to denote the action space of all players
excluding player j .

▶ A utility function ui : A → R for each player i ∈ P.
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Utility Maximization

Basic assumption: players will always try and act so as to
maximize their utility.

Definition
The best-response to a set of actions a−i ∈ A−i for a player i is
any action ai ∈ Ai that maximizes ui (ai , a−i ):

ai ∈ argmax
a∈Ai

ui (a, a−i )
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Interlude

Question: Is game theory just for sociopaths?

Answer: Not necessarily. (Assumes only that people have
consistent preferences)
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The General Idea for Prediction

“In any stable situation, all players should be playing a best
response.”

(Otherwise, by definition, the situation would not be stable –
somebody would want to change their action.)
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When are there stable solutions?

Definition
For a player i , an action a ∈ Ai (weakly) dominates action a′ ∈ Ai

if it is always beneficial to play a over a′. That is, if for all
a−i ∈ A−i :

ui (a, a−i ) ≥ ui (a
′, a−i )

and the inequality is strict for some a−i ∈ A−i .

Can normally eliminate dominated strategies from consideration –
there is never a situation in which they are the (unique) best
response.
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Dominant Strategies

Definition
An action a ∈ Ai is dominant for player i if it weakly dominates all
actions a′ ̸= a ∈ Ai .

1. A very strong guarantee – Always a best response.

2. No need to reason about what your opponents are doing.
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Dominant Strategy Equilibrium

Dominant strategies normally don’t exist, but when they do,
predictions are easy.

Definition
An action profile a = (a1, . . . , an) ∈ A is a dominant strategy
equilibrium of the game (P, {Ai}, {ui}) if for every i ∈ P, ai is a
dominant strategy for player i .
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Example: Prisoner’s Dilemma

Confess Silent
Confess (1, 1) (5, 0)
Silent (0, 5) (3, 3)

Figure: Prisoner’s Dilemma

(Confess, Confess) is a dominant strategy equilibrium is Prisoner’s
Dilemma.
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What if there are no dominant strategies?

▶ It still makes sense to eliminate dominated strategies from
consideration.

▶ Sometimes, once you’ve done this, new strategies have
become dominated.

▶ We can consider eliminating dominated strategies iteratively.

▶ If we are lucky, “iterated elimination of dominated strategies”
leads to a unique surviving strategy profile.
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Iterated Elimination: Example 1

X Y

A (5, 2) (4, 2)
B (3, 1) (3, 2)
C (2, 1) (4, 1)
D (4, 3) (5, 4)

Figure: Example 1



Iterated Elimination: Example 2

V W X Y Z

A (4,−1) (3, 0) (−3, 1) (−1, 4) (−2, 0)
B (−1, 1) (2, 2) (2, 3) (−1, 0) (2, 5)
C (2, 1) (−1,−1) (0, 4) (4,−1) (0, 2)
D (1, 6) (−3, 0) (−1, 4) (1, 1) (−1, 4)
E (0, 0) (1, 4) (−3, 1) (−2, 3) (−1,−1)

Figure: Example 2



What if Iterated Elimination Doesn’t Eliminate Anything?

We can still ask for a “stable” profile of actions.

Definition
A profile of actions a = (a1, . . . , an) ∈ A is a pure strategy Nash
Equilibrium if for each player i ∈ P and for all a′i ∈ Ai :

ui (ai , a−i ) ≥ ui (a
′
i , a−i )

i.e. simultaneously, all players are playing a best response to one
another.

Claim
If iterated elimination of dominated strategies results in a unique
solution, then it is a pure strategy Nash equilibrium.

Proof.
Homework!
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Problem 1: They don’t always exist.

Heads Tails
Heads (1,−1) (−1, 1)
Tails (−1, 1) (1,−1)

Figure: Matching Pennies



Problem 2: They aren’t always unique.

Bach Stravinsky
Bach (5, 1) (0, 0)

Stravinsky (0, 0) (1, 5)

Figure: Bach of Stravinsky



Question: What to Predict when No Pure Nash Equilibria?

Definition
A two-player game is zero-sum if for all a ∈ A, u1(a) = −u2(a).
(i.e. the utilities of of both players sum to zero at every action
profile)

1. e.g. Matching Pennies.

2. In matching pennies you should randomize to thwart your
opponent: Flip a coin and play heads 50% of the time, and
tails 50% of the time.

Definition
A mixed-strategy pi ∈ ∆Ai is a probability distribution over actions
ai ∈ Ai : i.e. a set of numbers pi (ai ) such that:

1. pi (ai ) ≥ 0 for all ai ∈ Ai

2.
∑

ai∈Ai
pi (ai ) = 1.

For p = (p1, . . . , pn) ∈ ∆A1 × . . .×∆An, we write:

ui (p) = Eai∼pi [ui (a)]



Question: What to Predict when No Pure Nash Equilibria?

Definition
A two-player game is zero-sum if for all a ∈ A, u1(a) = −u2(a).
(i.e. the utilities of of both players sum to zero at every action
profile)

1. e.g. Matching Pennies.

2. In matching pennies you should randomize to thwart your
opponent: Flip a coin and play heads 50% of the time, and
tails 50% of the time.

Definition
A mixed-strategy pi ∈ ∆Ai is a probability distribution over actions
ai ∈ Ai : i.e. a set of numbers pi (ai ) such that:

1. pi (ai ) ≥ 0 for all ai ∈ Ai

2.
∑

ai∈Ai
pi (ai ) = 1.

For p = (p1, . . . , pn) ∈ ∆A1 × . . .×∆An, we write:

ui (p) = Eai∼pi [ui (a)]



Question: What to Predict when No Pure Nash Equilibria?

Definition
A two-player game is zero-sum if for all a ∈ A, u1(a) = −u2(a).
(i.e. the utilities of of both players sum to zero at every action
profile)

1. e.g. Matching Pennies.

2. In matching pennies you should randomize to thwart your
opponent: Flip a coin and play heads 50% of the time, and
tails 50% of the time.

Definition
A mixed-strategy pi ∈ ∆Ai is a probability distribution over actions
ai ∈ Ai : i.e. a set of numbers pi (ai ) such that:

1. pi (ai ) ≥ 0 for all ai ∈ Ai

2.
∑

ai∈Ai
pi (ai ) = 1.

For p = (p1, . . . , pn) ∈ ∆A1 × . . .×∆An, we write:

ui (p) = Eai∼pi [ui (a)]



Question: What to Predict when No Pure Nash Equilibria?

Definition
A two-player game is zero-sum if for all a ∈ A, u1(a) = −u2(a).
(i.e. the utilities of of both players sum to zero at every action
profile)

1. e.g. Matching Pennies.

2. In matching pennies you should randomize to thwart your
opponent: Flip a coin and play heads 50% of the time, and
tails 50% of the time.

Definition
A mixed-strategy pi ∈ ∆Ai is a probability distribution over actions
ai ∈ Ai : i.e. a set of numbers pi (ai ) such that:

1. pi (ai ) ≥ 0 for all ai ∈ Ai

2.
∑

ai∈Ai
pi (ai ) = 1.

For p = (p1, . . . , pn) ∈ ∆A1 × . . .×∆An, we write:

ui (p) = Eai∼pi [ui (a)]



Mixed Strategy Nash Equilibria

Definition
A mixed strategy Nash equilibrium is a tuple
p = (p1, . . . , pn) ∈ ∆A1 × . . .×∆An such that for all i , and for all
ai ∈ Ai :

ui (p1, p−i ) ≥ ui (ai , p−i )

Theorem (Nash)

Every game with a finite set of players and actions has a mixed
strategy Nash equilibrium.

But... The proof is non-constructive, so its not necessarily clear
how to find one of these, even though they exist
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Thanks!

See you next class!


