# Auction Design in Single Parameter Domains

### Aaron Roth

University of Pennsylvania

March 20 2025

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

### Overview

Last lecture, we saw the VCG mechanism, which has a tremendous number of nice features, and achieves them all in a very general setting.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

### Overview

- Last lecture, we saw the VCG mechanism, which has a tremendous number of nice features, and achieves them all in a very general setting.
- ► However, the VCG mechanism was particular to maximizing social welfare: ∑<sub>i</sub> v<sub>i</sub>(a).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

### Overview

- Last lecture, we saw the VCG mechanism, which has a tremendous number of nice features, and achieves them all in a very general setting.
- ► However, the VCG mechanism was particular to maximizing social welfare: ∑<sub>i</sub> v<sub>i</sub>(a).
- What if we want to design an auction to maximize some other objective?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

One thing we can do is (slightly) generalize VCG to maximize any *affine* objective function:

$$\sum_{i=1}^n \alpha_i v_i(a) + \beta(a).$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

One thing we can do is (slightly) generalize VCG to maximize any *affine* objective function:

$$\sum_{i=1}^n \alpha_i \mathbf{v}_i(\mathbf{a}) + \beta(\mathbf{a}).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

You will prove this generalization on the homework.

One thing we can do is (slightly) generalize VCG to maximize any *affine* objective function:

$$\sum_{i=1}^n \alpha_i v_i(a) + \beta(a).$$

You will prove this generalization on the homework. What else can we do? In simple settings we can completely characterize the set of objective functions we can optimize truthfully.

# Simple Settings

### Definition (Single Parameter Domain)

A single parameter domain with a set of alternatives A is defined by a public value summarization function:

$$w_i: A \to \mathbb{R}$$

such that agent *i*'s valuation function is parameterized by a real number  $v_i \in \mathbb{R}$ , and values outcome *a* at  $v_i \cdot w_i(a)$ 

# Simple Settings

### Definition (Single Parameter Domain)

A single parameter domain with a set of alternatives A is defined by a public value summarization function:

$$w_i: A \to \mathbb{R}$$

such that agent *i*'s valuation function is parameterized by a real number  $v_i \in \mathbb{R}$ , and values outcome *a* at  $v_i \cdot w_i(a)$ 

i.e. single parameter domains are simple settings in which an agent's valuation can be described by a single real number representing her *relative preferences* over outcomes.

# Examples

1. Single item auctions.

$$w_i(a) = \begin{cases} 1, & a = i; \\ 0, & \text{otherwise.} \end{cases}$$

(ロ)、(型)、(E)、(E)、(E)、(O)()

## Examples

1. Single item auctions.

$$w_i(a) = \left\{egin{array}{cc} 1, & a=i;\ 0, & ext{otherwise}. \end{array}
ight.$$

 Buying a path in a network: agents are to edges in a network, experience cost if used. Mechanism would like to buy service from a set of agents that form a path, to optimize some objective. *a* is a set of edges and:

$$w_e(a) = \left\{egin{array}{cc} 1, & e \in A; \ 0, & ext{otherwise}. \end{array}
ight.$$

# Examples

1. Single item auctions.

$$w_i(a) = \left\{egin{array}{cc} 1, & a=i;\ 0, & ext{otherwise}. \end{array}
ight.$$

 Buying a path in a network: agents are to edges in a network, experience cost if used. Mechanism would like to buy service from a set of agents that form a path, to optimize some objective. *a* is a set of edges and:

$$w_e(a) = \left\{egin{array}{cc} 1, & e \in {\cal A}; \ 0, & {
m otherwise} \end{array}
ight.$$

3. Online Advertising: Each alternative *a* allocates a set of advertising slots.  $a_{ij} = 1$  if slot *j* is allocated to advertiser *i*. Advertisers have utility  $v_i$  for each unique viewer. Let  $E_j$  be the set of viewers who see slot *j*. Here:

$$w_i(a) = \left| \bigcup_{j:x_{ij}=1} E_j \right|$$

### Definition (Monotone Choice Rule)

A choice rule X for a single parameter domain is monotone-non-decreasing in  $v_i$  if for all  $v_{-i} \in \mathbb{R}^{n-1}$ , and for every  $v'_i \ge v_i$ :

$$w_i(X(v_i, v_{-i})) \leq w_i(X(v'_i, v_{-i}))$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

### Definition (Monotone Choice Rule)

A choice rule X for a single parameter domain is monotone-non-decreasing in  $v_i$  if for all  $v_{-i} \in \mathbb{R}^{n-1}$ , and for every  $v'_i \ge v_i$ :

$$w_i(X(v_i, v_{-i})) \leq w_i(X(v'_i, v_{-i}))$$

For example, in a single item auction: if an agent wins at bid  $v_i$ , he also wins at all bids  $v'_i > v_i$ .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

# Main Theorem

We will prove that an allocation rule can be made truthful (by pairing it with an appropriate payment rule) if and only if it is monotone.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

# Main Theorem

We will prove that an allocation rule can be made truthful (by pairing it with an appropriate payment rule) if and only if it is monotone.

#### Theorem

A mechanism defined in a single parameter domain can be made truthful if and only if X(v) is monotone non-decreasing for all  $v_i$ . In this case, it can be made truthful by using payment rule:

$$P(v)_i = v_i w_i(a^*) - \int_0^{v_i} w_i(X(z, v_{-i})) dz$$

where  $a^* = X(v)$ .

# Simpler notation: fix some agent *i* and $v_{-i}$ , write *v* for $v_i$ , and write y(v) for w(x(v)).

(ロ)、(型)、(E)、(E)、 E) の(()

Simpler notation: fix some agent *i* and  $v_{-i}$ , write *v* for  $v_i$ , and write y(v) for w(x(v)). (i.e. in a single item auction, we now write y(v) = 1 if *i* is allocated at bid *v*, and 0 otherwise).

Simpler notation: fix some agent *i* and  $v_{-i}$ , write *v* for  $v_i$ , and write y(v) for w(x(v)).

(i.e. in a single item auction, we now write y(v) = 1 if *i* is allocated at bid *v*, and 0 otherwise).

First the backwards direction: assuming X(v) is monotone non-decreasing and the payment rule is as given, the auction is truthful.

To show: For all v':

$$v \cdot y(v) - P(v)_i \ge v \cdot y(v') - P(v')_i$$

To show: For all v':

$$v \cdot y(v) - P(v)_i \geq v \cdot y(v') - P(v')_i$$

Plugging in the payment rule, this is:

$$v \cdot y(v) - v \cdot y(v) + \int_0^v y(z) dz \ge v y(v') - v' y(v') + \int_0^{v'} y(z) dz$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

To show: For all v':

$$v \cdot y(v) - P(v)_i \geq v \cdot y(v') - P(v')_i$$

Plugging in the payment rule, this is:

$$v\cdot y(v)-v\cdot y(v)+\int_0^v y(z)dz\geq vy(v')-v'y(v')+\int_0^{v'} y(z)dz$$

Which is equivalent to showing:

$$\int_0^v y(z) dz \ge \int_0^{v'} y(z) dz - (v' - v) y(v')$$
 (1)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Consider two cases:

Consider two cases:

1. Case 1: v' > v. In this case, equation 1 becomes:

$$\int_{v}^{v'} y(z) dz \leq (v'-v)y(v')$$

But this is true by monotonicity. We know that  $y(v') \ge y(z)$  for all  $z \le v'$ , and so:

$$\int_v^{v'} y(z)dz \leq \int_v^{v'} y(v')dz = (v'-v)y(v')$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

(See Picture)

1. Case 2: v' < v. In this case, equation 1 becomes:

$$\int_{v'}^{v} y(z) dz \geq (v - v') y(v')$$

Again, this follows from monotonicity since we know that  $y(v') \le y(z)$  for all  $z \ge v'$ . Hence, we have:

$$\int_{v'}^{v} y(z)dz \geq \int_{v'}^{v} y(v')dz = (v-v')y(v')$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

(See Picture)

Now, the forward direction.

Now, the forward direction.

To show: Given a truthful mechanism defining y, P, its allocation rule must be monotone.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Now, the forward direction.

To show: Given a truthful mechanism defining y, P, its allocation rule must be monotone.

Fix any v' > v. By truthfulness, we must have:

$$v \cdot y(v) - P(v)_i \geq v \cdot y(v') - P(v')_i$$

since a bidder with valuation v cannot benefit by misreporting value v'.

Now, the forward direction.

To show: Given a truthful mechanism defining y, P, its allocation rule must be monotone.

Fix any v' > v. By truthfulness, we must have:

$$v \cdot y(v) - P(v)_i \geq v \cdot y(v') - P(v')_i$$

since a bidder with valuation v cannot benefit by misreporting value v'.

We also know that a bidder with valuation v' cannot benefit by misreporting v:

$$v' \cdot y(v') - P(v')_i \geq v' \cdot y(v) - P(v)_i$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Adding these two inequalities, we get:

$$v \cdot y(v) + v' \cdot y(v') \ge v \cdot y(v') + v' \cdot y(v)$$

Adding these two inequalities, we get:

$$v \cdot y(v) + v' \cdot y(v') \ge v \cdot y(v') + v' \cdot y(v)$$

Rearranging, we get:

$$(v'-v)y(v') \ge (v'-v)y(v)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Adding these two inequalities, we get:

$$v \cdot y(v) + v' \cdot y(v') \ge v \cdot y(v') + v' \cdot y(v)$$

Rearranging, we get:

$$(v'-v)y(v') \geq (v'-v)y(v)$$

Since v' - v > 0, we can divide to obtain:

 $y(v') \geq y(v).$ 

Adding these two inequalities, we get:

$$v \cdot y(v) + v' \cdot y(v') \ge v \cdot y(v') + v' \cdot y(v)$$

Rearranging, we get:

$$(v'-v)y(v') \geq (v'-v)y(v)$$

Since v' - v > 0, we can divide to obtain:

 $y(v') \geq y(v).$ 

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

So the allocation rule must be monotone!

### Thanks!

See you next class — stay healthy!

